Я только что написал пакет R под названием totalcensus
(https://github.com/GL-Li/totalcensus),, с помощью которого вы можете легко извлечь любые данные в ходе десятилетней переписи и обследования ACS.
Для этого старого вопроса, если вы все еще заботитесь,Вы можете получить общую численность населения (по умолчанию) и численность других рас по национальным данным десятилетней переписи 2010 или 2015 года. ACS 5-летнее обследование.
С 2015 года ACS 5-летнее обследование. Загрузить национальные данные с download_census("acs5year", 2015, "US")
а затем:
zip_acs5 <- read_acs5year(
year = 2015,
states = "US",
geo_headers = "ZCTA5",
table_contents = c(
"white = B02001_002",
"black = B02001_003",
"asian = B02001_005"
),
summary_level = "860"
)
# GEOID lon lat ZCTA5 state population white black asian GEOCOMP SUMLEV NAME
# 1: 86000US01001 -72.62827 42.06233 01001 NA 17438 16014 230 639 all 860 ZCTA5 01001
# 2: 86000US01002 -72.45851 42.36398 01002 NA 29780 23333 1399 3853 all 860 ZCTA5 01002
# 3: 86000US01003 -72.52411 42.38994 01003 NA 11241 8967 699 1266 all 860 ZCTA5 01003
# 4: 86000US01005 -72.10660 42.41885 01005 NA 5201 5062 40 81 all 860 ZCTA5 01005
# 5: 86000US01007 -72.40047 42.27901 01007 NA 14838 14086 104 330 all 860 ZCTA5 01007
# ---
# 32985: 86000US99923 -130.04103 56.00232 99923 NA 13 13 0 0 all 860 ZCTA5 99923
# 32986: 86000US99925 -132.94593 55.55020 99925 NA 826 368 7 0 all 860 ZCTA5 99925
# 32987: 86000US99926 -131.47074 55.13807 99926 NA 1711 141 0 2 all 860 ZCTA5 99926
# 32988: 86000US99927 -133.45792 56.23906 99927 NA 123 114 0 0 all 860 ZCTA5 99927
# 32989: 86000US99929 -131.60683 56.41383 99929 NA 2365 1643 5 60 all 860 ZCTA5 99929
Из переписи 2010 года. Загрузите национальные данные с помощью download_census("decennial", 2010, "US")
, а затем:
zip_2010 <- read_decennial(
year = 2010,
states = "US",
table_contents = c(
"white = P0030002",
"black = P0030003",
"asian = P0030005"
),
geo_headers = "ZCTA5",
summary_level = "860"
)
# lon lat ZCTA5 state population white black asian GEOCOMP SUMLEV
# 1: -66.74996 18.18056 00601 NA 18570 17285 572 5 all 860
# 2: -67.17613 18.36227 00602 NA 41520 35980 2210 22 all 860
# 3: -67.11989 18.45518 00603 NA 54689 45348 4141 85 all 860
# 4: -66.93291 18.15835 00606 NA 6615 5883 314 3 all 860
# 5: -67.12587 18.29096 00610 NA 29016 23796 2083 37 all 860
# ---
# 33116: -130.04103 56.00232 99923 NA 87 79 0 0 all 860
# 33117: -132.94593 55.55020 99925 NA 819 350 2 4 all 860
# 33118: -131.47074 55.13807 99926 NA 1460 145 6 2 all 860
# 33119: -133.45792 56.23906 99927 NA 94 74 0 0 all 860
# 33120: -131.60683 56.41383 99929 NA 2338 1691 3 33 all 860