У меня есть файл json, который выглядит примерно так:
{
"model": "Sequential",
"layers": [
{
"L1": "Conv2D(filters = 64, kernel_size=(2,2), strides=(2,2), padding='same', data_format='channels_last', activation='relu', use_bias=True, kernel_initializer='zeros', bias_initializer='zeros', kernel_regularizer=regularizers.l1(0.), bias_regularizer=regularizers.l1(0.), activity_regularizer=regularizers.l1(0.), kernel_constraint=max_norm(2.), bias_constraint=max_norm(2.), input_shape=(224,224,3))",
"L2": "MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='same', data_format='channels_last')",
"L3": "Conv2D(filters = 64, kernel_size=(2,2), strides=(2,2), padding='same', data_format='channels_last', activation='relu', use_bias=True, kernel_initializer='zeros', bias_initializer='zeros', kernel_regularizer=regularizers.l1(0.), bias_regularizer=regularizers.l1(0.), activity_regularizer=regularizers.l1(0.), kernel_constraint=max_norm(2.), bias_constraint=max_norm(2.))",
"L4": "MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='same', data_format='channels_last')",
"L5": "Conv2D(filters = 64, kernel_size=(2,2), strides=(2,2), padding='same', data_format='channels_last', activation='relu', use_bias=True, kernel_initializer='zeros', bias_initializer='zeros', kernel_regularizer=regularizers.l1(0.), bias_regularizer=regularizers.l1(0.), activity_regularizer=regularizers.l1(0.), kernel_constraint=max_norm(2.), bias_constraint=max_norm(2.))",
"L6": "Conv2D(filters = 64, kernel_size=(2,2), strides=(2,2), padding='same', data_format='channels_last', activation='relu', use_bias=True, kernel_initializer='zeros', bias_initializer='zeros', kernel_regularizer=regularizers.l1(0.), bias_regularizer=regularizers.l1(0.), activity_regularizer=regularizers.l1(0.), kernel_constraint=max_norm(2.), bias_constraint=max_norm(2.))",
"L7": "Conv2D(filters = 64, kernel_size=(2,2), strides=(2,2), padding='same', data_format='channels_last', activation='relu', use_bias=True, kernel_initializer='zeros', bias_initializer='zeros', kernel_regularizer=regularizers.l1(0.), bias_regularizer=regularizers.l1(0.), activity_regularizer=regularizers.l1(0.), kernel_constraint=max_norm(2.), bias_constraint=max_norm(2.))",
"L8": "MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='same', data_format='channels_last')",
"L9": "Flatten()",
"L10": "Dense(4096, activation='softmax', use_bias=True, kernel_initializer='zeros', bias_initializer='zeros', kernel_regularizer=regularizers.l1(0.), bias_regularizer=regularizers.l1(0.), activity_regularizer=regularizers.l1(0.), kernel_constraint=max_norm(2.), bias_constraint=max_norm(2.))",
"L11": "Dropout(0.4)",
"L12": "Dense(2048, activation='softmax', use_bias=True, kernel_initializer='zeros', bias_initializer='zeros', kernel_regularizer=regularizers.l1(0.), bias_regularizer=regularizers.l1(0.), activity_regularizer=regularizers.l1(0.), kernel_constraint=max_norm(2.), bias_constraint=max_norm(2.))",
"L13": "Dropout(0.4)",
"L14": "Dense(1000, activation='softmax', use_bias=True, kernel_initializer='zeros', bias_initializer='zeros', kernel_regularizer=regularizers.l1(0.), bias_regularizer=regularizers.l1(0.), activity_regularizer=regularizers.l1(0.), kernel_constraint=max_norm(2.), bias_constraint=max_norm(2.))",
"L15": "Dropout(0.4)"
}
]
}
Я хочу получить информацию о том, какой слой присутствует в файле json.Например, Conv2D, MaxPooling2D, Flatten () и т. Д.
Кроме того, я хочу узнать значение строк, таких как фильтры, размер_узла, шаг, активация и т. Д.
Я попытался получить имя слоявыполнив это:
with open('model.json','r') as fb:
con = json.load(fb)
con['layers'][0]['L1'].split('(', 1)[0].rstrip()
Вывод 'Conv2d'
.Точно так же я получил другие имена слоев.
Мне нужна помощь, чтобы получить значение фильтров (например, 64 в L1).
Я пытался сделать это:
c = con['layers'][0]['L1'].split('(', 1)[1].rstrip()
c.split(',')
['filters = 8', ' kernel_size=(3', '3)', ' strides=(1', ' 1)', " padding='valid'", " data_format='channels_last'", " activation='relu'", ' use_bias=True', " kernel_initializer='zeros'", " bias_initializer='zeros'", ' kernel_regularizer=regularizers.l1(0.)', ' bias_regularizer=regularizers.l1(0.)', ' activity_regularizer=regularizers.l2(0.)', ' kernel_constraint=max_norm(2.)', ' bias_constraint=max_norm(2.)', ' input_shape=(28', '28', '1))']
Но все же я не получаю значение.
Кто-нибудь знает, как получить эту информацию?