У меня есть следующий код, где я использую cv2 orb для поиска совпадений между изображениями, используя порог расстояния и тест отношения Дэвида Лоу.Совпадения для одного и того же набора изображений (a, b) отличаются от a-> b и b <-a, поэтому я беру оба совпадения и сохраняю только симметричные совпадения.Теперь у меня есть набор из 93 изображений, и я должен создать матрицу расстояний между изображениями (где расстояние равно числу симметричных совпадений).Это матричное вычисление занимает много времени, как я могу улучшить скорость? </p>
import cv2
import numpy as np
import random
im1 = cv2.imread("eiffel_18.jpg",0)
im2 = cv2.imread("eiffel_19.jpg",0)
im3 = cv2.imread("bigben_3.jpg",0)
im4 = cv2.imread("bigben_2.jpg",0)
im5 = cv2.imread("bigben_12.jpg",0)
im6 = cv2.imread("notredame_1.jpg")
img_list=[im1,im2,im3,im4,im5]
jk=['a','b','c','d','e']
no_images=len(img_list)
def no_matches(img1,img2):
# detect features
orb = cv2.ORB_create(nfeatures=500)
(keypoints1, descriptors1) = orb.detectAndCompute(img1, None)
(keypoints2, descriptors2) = orb.detectAndCompute(img2, None)
distances={}
for i in range(0, len(keypoints1)):
temp=[]
dist=0
for j in range(0,len(keypoints2)):
distance=cv2.norm( descriptors1[i], descriptors2[j], cv2.NORM_HAMMING)
dist+=distance
temp.append((j,distance))
if(j==len(keypoints2)-1):
t=sorted(temp,key=lambda x: x[1])
num=t[0]
den=t[1]
distances[i]=(num,den,dist)
pairs=[]
## Ratio test and thresholding according to D.Lowe's paper
first_count=0
second_count=0
for keys,values in distances.items():
numerator=values[0][1]
denominator=values[1][1]
t=values[2]/500
if(numerator<64):
first_count+=1
if(numerator/float(denominator))<0.85:
second_count+=1
end1 = tuple(np.round(keypoints1[keys].pt).astype(int))
end3 = tuple(np.round(keypoints2[values[0][0]].pt).astype(int))
pairs.append((end1,end3))
return pairs,second_count,first_count
############################ distt is a matrix with all the distances between
all images ####################################
############################ Will be used to look up inter image distances in
K-means #######################################
distt=np.zeros((no_images,no_images),dtype=np.float32)
distt.fill(-1)
print("before",distt)
##ignoring distances of images with themselves
for i in range(distt.shape[0]):
print(i)
for j in range(distt.shape[1]):
if(i!=j):
if(distt[i][j]==-1):
relation,s1,f1=no_matches(img_list[i],img_list[j])
relation_symmetric,s2,f2=no_matches(img_list[j],img_list[i])
ctr=0
for match1 in relation:
for match2 in relation_symmetric:
if(match1[0]==match2[1] and match1[1]==match2[0]):
ctr+=1
total_matches=(s1+s2)+0.001
if(min(s1,s2)>0.8*max(s1,s2)):
total_matches=0.5*total_matches
distt[i][j]=((ctr)/total_matches)*100
distt[j][i]=((ctr)/total_matches)*100
print(distt)