В вашем коде был ряд ошибок. Я, вероятно, пропущу некоторые из них в своем описании.
- Обратите внимание, что эта функция кода в устройстве больше не доступна в более новых версиях CUDA.
- Каждый указатель, который передается коду устройства, должен быть выделен с
cudaMalloc
. Вы сделали cudaMalloc
за несколько указателей, но не все из них.
- Вы запутались в указателях и массивах указателей. Я не смогу разобраться со всем этим для вас. Ваш дизайн ядра действительно не нуждается в сложности использования массивов указателей. Так что я все это удалил.
- В динамическом параллелизме CUDA (CDP) указатели на локальное адресное пространство не могут передаваться дочерним ядрам. Вы не можете использовать альфа и бета в локальном адресном пространстве и передавать указатели на них в CUBLAS в CDP.
- Чтобы выполнить чистую транспонирование, изучите документацию CUBLAS Sgeam для рекомендуемых параметров для использования.
Я считаю, что были другие вещи, которые я исправил. Пожалуйста, изучите этот пример:
$ cat t1433.cu
/* Includes, system */
#include <stdio.h>
#include <stdlib.h>
#include<iostream>
/* Includes, cuda */
#include <cuda_runtime.h>
#include <cublas_v2.h>
/* Includes, cuda helper functions */
#include <helper_cuda.h>
__global__ void transposeCublasSgeam(int *M_A, int *N_A, float *ptrA, float *ptrC, const int N, int *address)
{
cublasHandle_t cnpHandle;
cublasStatus_t status = cublasCreate(&cnpHandle);
if (status != CUBLAS_STATUS_SUCCESS)
{
printf("thread: %d, error1: %d\n", threadIdx.x, (int)status);
return;
}
float *d_alpha = new float; // a pointer to device-heap, not local memory
*d_alpha = 1.0f;
float *d_beta = new float;
*d_beta = 0.0f;
int idx = threadIdx.x;
if(idx<N){
int m = M_A[idx]; //A_row
int n = N_A[idx]; //A_col
status = cublasSgeam(cnpHandle, CUBLAS_OP_T, CUBLAS_OP_N, m, n, d_alpha, ptrA+address[idx], n, d_beta, ptrC+address[idx], m, ptrC+address[idx], m);
if (status != CUBLAS_STATUS_SUCCESS)
{
printf("thread: %d, error2: %d\n", threadIdx.x, (int)status);
return;
}
}
cublasDestroy(cnpHandle);
}
int main()
{
const int N = 3;
int M_B[N] = { 2,3,2 }; //row number of matrices
int N_B[N] = { 3,2,4 }; //col number of matrices
float a[6] = { 1,2,3,
4,5,6 };
float b[6] = { 1,2,
3,4,
5,6};
float c[8] = { 1,2,3,1,
2,3,4,5 };
float *h_Bdata = (float *)malloc(sizeof(a)+sizeof(b)+sizeof(c));
float *h_BTdata = (float *)malloc(sizeof(a)+sizeof(b)+sizeof(c));
memcpy(h_Bdata, a, sizeof(a));
memcpy(h_Bdata+(sizeof(a)/sizeof(a[0])), b, sizeof(b));
memcpy(h_Bdata+(sizeof(a)/sizeof(a[0]))+(sizeof(b)/sizeof(b[0])), c, sizeof(c));
int NUM_B = 20; // total number of elements
int address[] = {0,6,12};
int *d_address;
cudaMalloc(&d_address, sizeof(address));
cudaMemcpy(d_address, address, sizeof(address), cudaMemcpyHostToDevice);
int *d_M_B, *d_N_B;
cudaMalloc(&d_M_B, sizeof(M_B));
cudaMalloc(&d_N_B, sizeof(N_B));
cudaMemcpy(d_M_B, M_B, sizeof(M_B), cudaMemcpyHostToDevice);
cudaMemcpy(d_N_B, N_B, sizeof(N_B), cudaMemcpyHostToDevice);
float *d_B, *d_BT;
checkCudaErrors(cudaMalloc((void **)&d_B, NUM_B * sizeof(float)));
checkCudaErrors(cudaMalloc((void **)&d_BT, NUM_B * sizeof(float)));
checkCudaErrors(cudaMemcpy(d_B, h_Bdata, NUM_B * sizeof(float), cudaMemcpyHostToDevice));
transposeCublasSgeam<<<1,N>>>(d_M_B, d_N_B, d_B,d_BT, N,d_address);
checkCudaErrors(cudaMemcpy(h_BTdata, d_BT, NUM_B * sizeof(float), cudaMemcpyDeviceToHost));
std::cout << "B , BT" << std::endl;
for (int i = 0; i < NUM_B; i++){
std::cout << h_Bdata[i] << " , " << h_BTdata[i] << std::endl;}
cudaFree(d_B);
cudaFree(d_BT);
return 0;
}
$ /usr/local/cuda-8.0/bin/nvcc -I/usr/local/cuda-8.0/samples/common/inc t1433.cu -rdc=true -lcublas_device -lcudadevrt -arch=sm_35 -o t1433
$ LD_LIBRARY_PATH=/usr/local/cuda-8.0/lib64 CUDA_VISIBLE_DEVICES="3" cuda-memcheck ./t1433
========= CUDA-MEMCHECK
B , BT
1 , 1
2 , 4
3 , 2
4 , 5
5 , 3
6 , 6
1 , 1
2 , 3
3 , 5
4 , 2
5 , 4
6 , 6
1 , 1
2 , 2
3 , 2
1 , 3
2 , 3
3 , 4
4 , 1
5 , 5
========= ERROR SUMMARY: 0 errors
$