Я решил эту проблему, используя 7x7 разделы изображения, чтобы классифицировать центральный пиксель этого раздела как нефть или воду (1 или 0). Затем я использовал функцию потерь binary_crossentropy для обучения модели.
Имея секцию 7x7, перемещающуюся по одному пикселю за раз по основному изображению, я могу получить гораздо больше тренировочных данных, чем просто сегментирование основного изображения.
Ранее я пытался получить изображение 7x7 из другого изображения 7x7, что усложнило проблему.
#IMPORT AND SPLIT
from cam_img_split import cam_img_split
from cam_pad import cam_pad
from cam_img_bow import cam_img_bow
import cv2
import numpy as np
img_tr_in=cv2.imread('frame 1.png',0)[0:767,0:767]/255
img_tr_out=cv2.imread('frame 1 so far bnw 2.png',0)[0:767,0:767]/255
img_tr_out=(cam_img_bow(img_tr_out,0.5)).astype(np.uint8)
seg_shape=[15,15] #needs to be odd and equal to each other
pl_max=img_tr_in.shape[0:2]
pl=np.array([0.15*pl_max[0],pl_max[1]]).astype(np.uint32)
pad_in=int(np.floor(seg_shape[0]/2))
img_tr_in_pad=cam_pad(img_tr_in,pad_in)
tr_in=np.zeros([pl[0],pl[1],seg_shape[0],seg_shape[1]])
for n1 in range(0,pl[0]):
for n2 in range(0,pl[1]):
tr_in[n1,n2]=img_tr_in_pad[n1:n1+seg_shape[0],n2:n2+seg_shape[1]]
##################### NEURAL NETWORK
import tensorflow as tf
from keras.models import Sequential
from keras.layers import Dense,Dropout,Conv2D, MaxPooling2D, Flatten
from keras.optimizers import adam
from keras.utils import to_categorical
import matplotlib.pyplot as plt
pad=4
input_shape=(seg_shape[0]+2*pad,seg_shape[1]+2*pad,1)
output_shape=(1,1,1)
model = Sequential()
model.add(Conv2D(32, (3, 3),input_shape=input_shape, activation='relu'))
model.add(Conv2D(64,(3, 3), activation='relu'))
model.add(Dropout(0.2))
model.add(Flatten())
model.add(Dense(units=2, activation='softmax'))
model.compile(optimizer=adam(lr=0.001), loss='binary_crossentropy', metrics=['accuracy'])
##################### FITTING THE MODEL
tr_in_flat=tr_in.reshape([pl[0]*pl[1],seg_shape[0],seg_shape[1],1])
tr_out_flat=img_tr_out.reshape([pl_max[0]*pl_max[1]])
tr_in_flat_pad=np.zeros(tr_in_flat.shape+np.array([0,2*pad,2*pad,0]))
for n3 in range(0,tr_in_flat.shape[0]):
tr_in_flat_pad[n3,:,:,0]=cam_pad(tr_in_flat[n3,:,:,0], pad)
model.fit(tr_in_flat_pad, to_categorical(tr_out_flat[0:pl[0]*pl[1]]), epochs=5, batch_size=int(16*pl[0]),shuffle=True)
##################### PLOTTING PREDICTIONS
tr_in_full=np.zeros([pl_max[0],pl_max[1],seg_shape[0]+2*pad,seg_shape[1]+2*pad])
for n1 in range(0,pl_max[0]):
for n2 in range(0,pl_max[1]):
tr_in_full[n1,n2]=cam_pad(img_tr_in_pad[n1:n1+seg_shape[0],n2:n2+seg_shape[1]],pad)
tr_in_full_flat=tr_in_full.reshape([pl_max[0]*pl_max[1],seg_shape[0]+2*pad,seg_shape[1]+2*pad,1])
pred = model.predict(tr_in_full_flat)
pred_img=np.zeros(pred.shape[0])
for n1 in range(0,pred.shape[0]):
pred_img[n1]=round(pred[n1,0])
pred_img_out=(pred_img.reshape([pl_max[0],pl_max[1]]))
plt.subplot(1,2,1)
plt.imshow(pred_img_out)
plt.subplot(1,2,2)
plt.imshow(img_tr_in)
plt.show()