В приведенном ниже коде я запускаю симуляции Монте-Карло.Я пытаюсь ускорить его с помощью многопроцессорного пула.Проблема в том, что когда исполняется код, пул не любит пустые массивы.Что-нибудь еще, что я мог сделать, чтобы сделать эту работу?
import numpy as np
from multiprocessing import Pool
import time
class PricingSimulatedBarrierOption:
def __init__(self, spot, strike, barrier, rate, sigma, time, sims, steps):
self.spot = spot
self.strike = strike
self.barrier = barrier
self.rate = rate
self.sigma = sigma
self.time = time
self.sims = sims
self.steps = steps
self.dt = self.time / self.steps
self.pathwiseS= np.zeros((self.steps+1),float)
def Simulations(self):
print("Called")
total = np.zeros((self.sims,self.steps+1),float)
self.pathwiseS= np.zeros((self.steps+1),float)
for j in range(self.sims):
self.pathwiseS[0] =self.spot
total[j,0] = self.spot
for i in range(1,self.steps+1):
phi = np.random.normal()
self.pathwiseS[i] = self.pathwiseS[i-1]*(1+self.rate*self.dt+self.sigma*phi*np.sqrt(self.dt))
total[j,i]= self.pathwiseS[i]
return total.reshape(self.sims, self.steps+1)
def CallUpAndOut(self):
start_time = time.time()
p = Pool()
getpayoff = p.map(self.Simulations(),self.pathwiseS)
p.close()
p.join()
end_time = time.time()-start_time
print(end_time)
# getpayoff = self.Simulations()
callpayoff = np.zeros((self.sims),float)
for j in range(self.sims):
if max(getpayoff[j,])>=self.barrier:
callpayoff[j] = 0
else:
callpayoff[j] = max(getpayoff[j,self.steps-1]-self.strike,0)
return np.exp(-self.rate*self.time)*np.average(callpayoff)
c = PricingSimulatedBarrierOption(100,100,170,0.05,0.2,1,10000,252)
print(c.CallUpAndOut())