A data.table
опция с использованием rle
library(data.table)
DT <- as.data.table(dat)
DT[, goal := {
r <- rle(replace(criterium, is.na(criterium), FALSE))
r$values <- with(r, cumsum(values) * values)
out <- inverse.rle(r)
replace(out, out == 0, NA)
}, by = group]
DT
# group criterium goal
# 1: A NA NA
# 2: A TRUE 1
# 3: A TRUE 1
# 4: A TRUE 1
# 5: A FALSE NA
# 6: A FALSE NA
# 7: A TRUE 2
# 8: A TRUE 2
# 9: A FALSE NA
#10: A TRUE 3
#11: A TRUE 3
#12: A TRUE 3
#13: B NA NA
#14: B FALSE NA
#15: B TRUE 1
#16: B TRUE 1
#17: B TRUE 1
#18: B FALSE NA
шаг за шагом
Когда мы вызываем r <- rle(replace(criterium, is.na(criterium), FALSE))
, мы получаем объект класса rle
r
#Run Length Encoding
# lengths: int [1:9] 1 3 2 2 1 3 2 3 1
# values : logi [1:9] FALSE TRUE FALSE TRUE FALSE TRUE ...
Мы манипулируем компонентой values
следующим образом
r$values <- with(r, cumsum(values) * values)
r
#Run Length Encoding
# lengths: int [1:9] 1 3 2 2 1 3 2 3 1
# values : int [1:9] 0 1 0 2 0 3 0 4 0
То есть мы заменили TRUE
s на совокупную сумму values
и установилиFALSE
с 0
.Теперь inverse.rle
возвращает вектор, в котором values
будет повторяться lenghts
раз
out <- inverse.rle(r)
out
# [1] 0 1 1 1 0 0 2 2 0 3 3 3 0 0 4 4 4 0
Это почти то, что хочет OP, но нам нужно заменить 0
s на NA
replace(out, out == 0, NA)
Это делается для каждого group
.
данных
dat <- structure(list(group = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L), .Label = c("A",
"B"), class = "factor"), criterium = c(NA, TRUE, TRUE, TRUE,
FALSE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, TRUE, NA, FALSE,
TRUE, TRUE, TRUE, FALSE)), class = "data.frame", row.names = c(NA,
-18L))