Фон:
- Windows 10
- Тензор потока: 1,12
За официальным документом здесь . Так как набор данных генерируется из эксперимента, то не так много доступных изображений, около 50 тренировочных изображений и 10 тестовых изображений. Предварительно обученная модель - ssd_inception_v2_coco . При обучении с использованием
python train.py --logtostderr --train_dir=training/ --pipeline_config_path=training/ssd_inception_v2_coco.config
увидел следующий вывод и программа вышла.
(a million lines here...)
W0423 15:59:38.764785 21492 variables_helper.py:144] Variable [FeatureExtractor/InceptionV2/Mixed_5c_2_Conv2d_5_3x3_s2_128/BatchNorm/beta/RMSProp] is not available in checkpoint
W0423 15:59:38.765782 21492 variables_helper.py:144] Variable [FeatureExtractor/InceptionV2/Mixed_5c_2_Conv2d_5_3x3_s2_128/BatchNorm/beta/RMSProp_1] is not available in checkpoint
W0423 15:59:38.765782 21492 variables_helper.py:144] Variable [FeatureExtractor/InceptionV2/Mixed_5c_2_Conv2d_5_3x3_s2_128/BatchNorm/gamma/ExponentialMovingAverage] is not available in checkpoint
W0423 15:59:38.765782 21492 variables_helper.py:144] Variable [FeatureExtractor/InceptionV2/Mixed_5c_2_Conv2d_5_3x3_s2_128/BatchNorm/gamma/RMSProp] is not available in checkpoint
W0423 15:59:38.765782 21492 variables_helper.py:144] Variable [FeatureExtractor/InceptionV2/Mixed_5c_2_Conv2d_5_3x3_s2_128/BatchNorm/gamma/RMSProp_1] is not available in checkpoint
W0423 15:59:38.765782 21492 variables_helper.py:144] Variable [FeatureExtractor/InceptionV2/Mixed_5c_2_Conv2d_5_3x3_s2_128/weights/ExponentialMovingAverage] is not available in checkpoint
W0423 15:59:38.765782 21492 variables_helper.py:144] Variable [FeatureExtractor/InceptionV2/Mixed_5c_2_Conv2d_5_3x3_s2_128/weights/RMSProp] is not available in checkpoint
W0423 15:59:38.765782 21492 variables_helper.py:144] Variable [FeatureExtractor/InceptionV2/Mixed_5c_2_Conv2d_5_3x3_s2_128/weights/RMSProp_1] is not available in checkpoint
WARNING:tensorflow:From d:\Anaconda3\lib\site-packages\tensorflow\contrib\slim\python\slim\learning.py:737: Supervisor.__init__ (from tensorflow.python.training.supervisor) is deprecated and will be removed in a future version.
Instructions for updating:
Please switch to tf.train.MonitoredTrainingSession
W0423 15:59:39.539828 21492 tf_logging.py:125] From d:\Anaconda3\lib\site-packages\tensorflow\contrib\slim\python\slim\learning.py:737: Supervisor.__init__ (from tensorflow.python.training.supervisor) is deprecated and will be removed in a future version.
Instructions for updating:
Please switch to tf.train.MonitoredTrainingSession
2019-04-23 15:59:41.155297: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2
2019-04-23 15:59:41.385078: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1432] Found device 0 with properties:
name: GeForce GTX 1080 Ti major: 6 minor: 1 memoryClockRate(GHz): 1.7085
pciBusID: 0000:01:00.0
totalMemory: 11.00GiB freeMemory: 9.11GiB
2019-04-23 15:59:41.390824: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1511] Adding visible gpu devices: 0
2019-04-23 15:59:42.311427: I tensorflow/core/common_runtime/gpu/gpu_device.cc:982] Device interconnect StreamExecutor with strength 1 edge matrix:
2019-04-23 15:59:42.322811: I tensorflow/core/common_runtime/gpu/gpu_device.cc:988] 0
2019-04-23 15:59:42.324856: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1001] 0: N
2019-04-23 15:59:42.327029: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1115] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 8799 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1080 Ti, pci bus id: 0000:01:00.0, compute capability: 6.1)
INFO:tensorflow:Restoring parameters from pre-trained-model/model.ckpt
I0423 15:59:46.439763 21492 tf_logging.py:115] Restoring parameters from pre-trained-model/model.ckpt
INFO:tensorflow:Running local_init_op.
I0423 15:59:46.674186 21492 tf_logging.py:115] Running local_init_op.
INFO:tensorflow:Done running local_init_op.
I0423 15:59:47.319484 21492 tf_logging.py:115] Done running local_init_op.
INFO:tensorflow:Starting Session.
I0423 15:59:54.453117 21492 tf_logging.py:115] Starting Session.
INFO:tensorflow:Saving checkpoint to path training/model.ckpt
I0423 15:59:54.647598 15672 tf_logging.py:115] Saving checkpoint to path training/model.ckpt
INFO:tensorflow:Starting Queues.
I0423 15:59:54.651614 21492 tf_logging.py:115] Starting Queues.
INFO:tensorflow:global_step/sec: 0
I0423 16:00:01.125150 4792 tf_logging.py:159] global_step/sec: 0
D:\workspace\demo>
А вот файл конфигурации:
model {
ssd {
num_classes: 1
box_coder {
faster_rcnn_box_coder {
y_scale: 10.0
x_scale: 10.0
height_scale: 5.0
width_scale: 5.0
}
}
matcher {
argmax_matcher {
matched_threshold: 0.5
unmatched_threshold: 0.5
ignore_thresholds: false
negatives_lower_than_unmatched: true
force_match_for_each_row: true
}
}
similarity_calculator {
iou_similarity {
}
}
anchor_generator {
ssd_anchor_generator {
num_layers: 6
min_scale: 0.2
max_scale: 0.95
aspect_ratios: 1.0
aspect_ratios: 2.0
aspect_ratios: 0.5
aspect_ratios: 3.0
aspect_ratios: 0.3333
reduce_boxes_in_lowest_layer: true
}
}
image_resizer {
fixed_shape_resizer {
height: 300
width: 300
}
}
box_predictor {
convolutional_box_predictor {
min_depth: 0
max_depth: 0
num_layers_before_predictor: 0
use_dropout: false
dropout_keep_probability: 0.8
kernel_size: 3
box_code_size: 4
apply_sigmoid_to_scores: false
conv_hyperparams {
activation: RELU_6,
regularizer {
l2_regularizer {
weight: 0.00004
}
}
initializer {
truncated_normal_initializer {
stddev: 0.03
mean: 0.0
}
}
}
}
}
feature_extractor {
type: 'ssd_inception_v2'
min_depth: 16
depth_multiplier: 1.0
conv_hyperparams {
activation: RELU_6,
regularizer {
l2_regularizer {
weight: 0.00004
}
}
initializer {
truncated_normal_initializer {
stddev: 0.03
mean: 0.0
}
}
batch_norm {
train: true,
scale: true,
center: true,
decay: 0.9997,
epsilon: 0.001,
}
}
override_base_feature_extractor_hyperparams: true
}
loss {
classification_loss {
weighted_sigmoid {
}
}
localization_loss {
weighted_smooth_l1 {
}
}
hard_example_miner {
num_hard_examples: 3000
iou_threshold: 0.99
loss_type: CLASSIFICATION
max_negatives_per_positive: 3
min_negatives_per_image: 0
}
classification_weight: 1.0
localization_weight: 1.0
}
normalize_loss_by_num_matches: true
post_processing {
batch_non_max_suppression {
score_threshold: 1e-8
iou_threshold: 0.6
max_detections_per_class: 100
max_total_detections: 100
}
score_converter: SIGMOID
}
}
}
train_config: {
batch_size: 4
optimizer {
rms_prop_optimizer: {
learning_rate: {
exponential_decay_learning_rate {
initial_learning_rate: 0.0004
decay_steps: 5000
decay_factor: 0.99
}
}
momentum_optimizer_value: 0.9
decay: 0.9
epsilon: 1.0
}
}
fine_tune_checkpoint: "pre-trained-model/model.ckpt"
from_detection_checkpoint: true
# Note: The below line limits the training process to 200K steps, which we
# empirically found to be sufficient enough to train the pets dataset. This
# effectively bypasses the learning rate schedule (the learning rate will
# never decay). Remove the below line to train indefinitely.
num_steps: 200000
data_augmentation_options {
random_horizontal_flip {
}
}
data_augmentation_options {
ssd_random_crop {
}
}
}
train_input_reader: {
tf_record_input_reader {
input_path: "annotations/train.record"
}
label_map_path: "annotations/label_map.pbtxt"
}
eval_config: {
num_examples: 5
# Note: The below line limits the evaluation process to 10 evaluations.
# Remove the below line to evaluate indefinitely.
max_evals: 5
}
eval_input_reader: {
tf_record_input_reader {
input_path: "annotations/test.record"
}
label_map_path: "annotations/label_map.pbtxt"
shuffle: false
num_readers: 1
}
Полагаю, модель не обучалась, потому что тензорная доска выглядит так:
Ну, есть идеи, как начать тренировку?