Когда я пытаюсь выполнить мета-анализ с иерархическими весами в robumeta, я получаю
Ошибка в eigen (x): бесконечные или отсутствующие значения в 'x',
с использованием тех же данных, которые не приводят к ошибкам с корреляционными весами.Моя матрица данных не имеет NA или пропущенных значений.Кластер включает целые числа от 1 до 4.
Кто-нибудь знает, почему я получаю ошибку Eigen (x)?Код, необходимый для воспроизведения ошибки:
#load data, you need to adjust read.table depending on where the file is saved.
mydata <- read.table ("H:/Desktop/Max_R_Dataset_Meta_Analysis.csv", header = TRUE, sep = ",")
#install & load packages
library (robumeta)
library (devtools)
install_github("jepusto/clubSandwich")
library (clubSandwich)
#fit moderator model with CORR
res_2 <- robu (formula = effect_size ~ pathway, var.eff.size = effect_size_variance, studynum = Study_ID, modelweights = "CORR", rho = 0.8, small = TRUE, data = mydata)
print (res_2)
#fit moderator model with HIER
hier1 <- robu (formula = effect_size ~ pathway, var.eff.size = effect_size_variance, studynum = cluster, modelweights = "HIER", small = TRUE, data = mydata)
print (hier1)
dput (head(mydata,35))
structure(list(Study_ID = c(1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L,
4L, 4L, 4L, 5L, 5L, 5L, 6L, 6L, 6L, 7L, 7L, 7L, 1L, 1L, 1L, 2L,
2L, 2L, 3L, 3L, 3L, 4L, 4L, 4L, 5L, 5L), effect_size = c(-0.05,
-0.09, -4.44, 0.28, 0.25, 0.91, 0.31, 0.31, 0.33, 0.27, 0.13,
0.71, -0.1, -0.09, -0.28, 0.2, 0.23, 1.23, 0.21, 0.22, 0.29,
-0.18, -0.16, -0.75, 0.2, 0.24, 2.47, 0.37, 0.36, 2.34, 0.17,
0.15, 0.85, 0.04, 0), effect_size_variance = c(0.010737802, 0.008056791,
30.135452, 0.010478163, 0.011260784, 0.093962475, 0.006933061,
0.008891908, 0.007840352, 0.006092875, 0.007411207, 0.040583305,
0.021610499, 0.019590468, 0.104406625, 0.012783255, 0.011467534,
0.333023923, 0.004151044, 0.008464275, 0.006936499, 0.012797742,
0.007904113, 0.307592997, 0.001625522, 0.002084078, 0.230050467,
0.009038613, 0.00895868, 0.34524772, 0.004019923, 0.002854116,
0.078314231, 0.007680706, 0), pathway = c(2L, 4L, 6L, 2L, 4L,
6L, 2L, 4L, 6L, 2L, 4L, 6L, 2L, 4L, 6L, 2L, 4L, 6L, 2L, 4L, 6L,
1L, 3L, 5L, 1L, 3L, 5L, 1L, 3L, 5L, 1L, 3L, 5L, 1L, 3L), cluster = c(1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L,
2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
2L, 2L), Study_Name = structure(c(1L, 1L, 1L, 2L, 2L, 2L, 3L,
3L, 3L, 4L, 4L, 4L, 5L, 5L, 5L, 6L, 6L, 6L, 7L, 7L, 7L, 1L, 1L,
1L, 2L, 2L, 2L, 3L, 3L, 3L, 4L, 4L, 4L, 5L, 5L), .Label = c("Desiree Thesis Arab",
"Desiree Thesis White", "Gijs Direct Replication", "Gijs Indirect Replication",
"Irina Africa Black", "Irina Africa White", "Irina Thesis", "Max Thesis",
"Stein Race", "Yuan Exp1"), class = "factor")), row.names = c(NA,
35L), class = "data.frame")
HIER-версия работает с примерами данных, предоставленных авторами робуметы.