Я создал классификатор для ImageDataGenerator, созданный с использованием flow_from_directory
, который загружает мой набор данных, а затем я выполняю обучение модели и прогнозированию.
У меня вопрос как получить метрики (то есть в соответствии, вспомнить, FPR и т. Д.) Из вывода classifier.predict_generator?
Если я не ошибаюсь, использование методов confusion_matrix иification_report очень поможет. Изображения (файлы .tif) находятся в
/data/test/image ---> RGB images
/data/test/label ---> Binary mask images
/data/train/image ---> RGB images
/data/train/label ---> Binary mask images
Изображения выглядят следующим образом:
RGB-изображение
Изображение маски .
Метод pregnet_generator возвращает изображения вот так:
Прогнозируемое изображение
Я уже пробовал коды вроде следующего, чтобы сгенерировать путаницу, но не работает должным образом:
predicted_classes_indices = np.argmax(results,axis=1)
labels = (image_generator.class_indices)
labels = dict((v, k) for k, v in labels.items())
predictions = [labels[k] for k in predicted_classes_indices]
cm = confusion_matrix(labels, predicted_classes_indices)
Весь код:
from redeUnet import get_unet
import matplotlib.pyplot as plt
import numpy as np
import os
from tensorflow.python.keras.preprocessing.image import ImageDataGenerator
from tensorflow.python.keras.models import model_from_json
from tensorflow.python.keras.callbacks import EarlyStopping
from tensorflow.python.keras.callbacks import ModelCheckpoint
PATH_TRAIN = "..\\data\\train\\"
btSize = 4
alt = 256 # image row
larg = 256 # image col
image_folder = 'image'
mask_folder = 'label'
image_color_mode = 'rgb'
mask_color_mode = 'grayscale'
clMode = 'None' #'binary'
epocas = 5
qtdPatience = 60
'''
Data augmentation
'''
data_gen_args = dict(featurewise_center=False,
samplewise_center=False, # set each sample mean to 0
featurewise_std_normalization=False, # divide inputs by std of the dataset
samplewise_std_normalization=False, # divide each input by its std
zca_whitening=False, # apply ZCA whitening
rotation_range=40, # randomly rotate images in the range (degrees, 0 to 180)
zoom_range = 0.2, # Randomly zoom image
width_shift_range=0.2, # randomly shift images horizontally (fraction of total width)
height_shift_range=0.2, # randomly shift images vertically (fraction of total height)
horizontal_flip=True, # randomly flip images
vertical_flip=False,
rescale=1./255,
validation_split = 0.2) # randomly flip images
train_image_datagen = ImageDataGenerator(**data_gen_args)
train_mask_datagen = ImageDataGenerator(**data_gen_args)
'''
DATASET prepare and load (20% Validation)
'''
# Load RGB images TRAINING
image_generator = train_image_datagen.flow_from_directory(PATH_TRAIN,
classes = [image_folder],
class_mode = None,
color_mode = image_color_mode,
target_size = (larg, alt),
batch_size = btSize,
save_to_dir = None,
shuffle = False,
subset = 'training',
seed = 1)
# Load BINARY (Mask) images TRAINING
mask_generator = train_mask_datagen.flow_from_directory(PATH_TRAIN,
classes = [mask_folder],
class_mode = None,
color_mode = mask_color_mode,
target_size = (larg, alt),
batch_size = btSize,
save_to_dir = None,
shuffle = False,
subset = 'training',
seed = 1)
train_generator = zip(image_generator, mask_generator)
#-------------------------------------------------
# VALIDATION images RGB
valid_image_generator = train_image_datagen.flow_from_directory(PATH_TRAIN,
classes = [image_folder],
class_mode = None,
color_mode = image_color_mode,
target_size = (larg, alt),
batch_size = btSize,
save_to_dir = None,
shuffle = False,
subset = 'validation',
seed = 1)
# VALIDATION images BINARY (Mask)
valid_mask_generator = train_mask_datagen.flow_from_directory(PATH_TRAIN,
classes = [mask_folder],
class_mode = None,
color_mode = mask_color_mode,
target_size = (larg, alt),
batch_size = btSize,
save_to_dir = None,
shuffle = False,
subset = 'validation',
seed = 1)
valid_generator = zip(valid_image_generator, valid_mask_generator)
#-------------------------------------------------
'''
RUN TRAINING
'''
# Get UNET
classificador = get_unet(larg, alt, 3)
classificador.compile(optimizer = Adam(lr = 1e-4), loss = 'binary_crossentropy', metrics = ['accuracy']) #metrics = ['accuracy', minhaMetrica])
# Salvando o Modelo e Pesos (Best Model, StopEarly)
es = EarlyStopping(monitor = 'val_loss', mode = 'min', verbose = 1, patience = qtdPatience)
mc = ModelCheckpoint('best_polyp_unet_model.h5', monitor = 'val_loss', verbose = 1, save_best_only = True)
history = classificador.fit_generator(train_generator,
steps_per_epoch = image_generator.n // btSize,
validation_data = valid_generator,
validation_steps = valid_image_generator.n // btSize,
epochs = epocas, callbacks=[es, mc])
resultados = classificador.predict_generator(valid_generator,
steps = valid_image_generator.n,
verbose = 1)
#-------------------------------------------------
#HOW TO GET THE METRICS?
predicted_classes_indices = np.argmax(resultados,axis=1)
labels = (image_generator.class_indices)
labels = dict((v, k) for k, v in labels.items())
predictions = [labels[k] for k in predicted_classes_indices]
cm = confusion_matrix(ground_truth, predicted_classes)
#-------------------------------------------------
Я получил сообщение об ошибке в этой строке:
predictions = [labels[k] for k in predicted_classes_indices]
Ошибка: непредсказуемый тип: 'numpy.ndarray'
Когда я проверил выходную переменную прогноза ("resultados"), запустив эту команду: resultados.shape
. Показывает, что:
(480, 256, 256, 1)
По прогнозам U-сети создано 480 изображений.
Но как я могу преобразовать эту информацию, например, в "confusion_matrix" или "ification_report "? Я думаю, что это сложнее, потому что это проблема сегментации.
Любые предложения будут оценены.