Код на странице в ссылка делает смелое утверждение:
STACK Моя реализация не использует стек для хранения данных ...
Тем не менее, определение функции имеет много переменных с автоматическим хранением, среди них 2 массива с 1000 записями, которые в конечном итоге будут использовать фиксированный, но существенный объем стекового пространства:
// quickSort
//
// This public-domain C implementation by Darel Rex Finley.
//
// * Returns YES if sort was successful, or NO if the nested
// pivots went too deep, in which case your array will have
// been re-ordered, but probably not sorted correctly.
//
// * This function assumes it is called with valid parameters.
//
// * Example calls:
// quickSort(&myArray[0],5); // sorts elements 0, 1, 2, 3, and 4
// quickSort(&myArray[3],5); // sorts elements 3, 4, 5, 6, and 7
bool quickSort(int *arr, int elements) {
#define MAX_LEVELS 1000
int piv, beg[MAX_LEVELS], end[MAX_LEVELS], i=0, L, R ;
beg[0]=0; end[0]=elements;
while (i>=0) {
L=beg[i]; R=end[i]-1;
if (L<R) {
piv=arr[L]; if (i==MAX_LEVELS-1) return NO;
while (L<R) {
while (arr[R]>=piv && L<R) R--; if (L<R) arr[L++]=arr[R];
while (arr[L]<=piv && L<R) L++; if (L<R) arr[R--]=arr[L]; }
arr[L]=piv; beg[i+1]=L+1; end[i+1]=end[i]; end[i++]=L; }
else {
i--; }}
return YES; }
Стиль отступов очень запутанный. Вот переформатированная версия:
#define MAX_LEVELS 1000
bool quickSort(int *arr, int elements) {
int piv, beg[MAX_LEVELS], end[MAX_LEVELS], i = 0, L, R;
beg[0] = 0;
end[0] = elements;
while (i >= 0) {
L = beg[i];
R = end[i] - 1;
if (L < R) {
piv = arr[L];
if (i == MAX_LEVELS - 1)
return NO;
while (L < R) {
while (arr[R] >= piv && L < R)
R--;
if (L < R)
arr[L++] = arr[R];
while (arr[L] <= piv && L < R)
L++;
if (L < R)
arr[R--] = arr[L];
}
arr[L] = piv;
beg[i + 1] = L + 1;
end[i + 1] = end[i];
end[i++] = L;
} else {
i--;
}
}
return YES;
}
Обратите внимание, что 1000
является большим, но недостаточным для патологических случаев на умеренно больших массивах, которые уже отсортированы. Функция возвращает NO
для таких массивов только с размером 1000, что недопустимо.
Гораздо меньшего значения будет достаточно для улучшенной версии алгоритма, в которой больший диапазон помещается в массив, а цикл повторяется в меньшем диапазоне. Это гарантирует, что массив из N записей может обрабатывать набор из 2 N записей. Он по-прежнему имеет квадратичную сложность по времени для отсортированных массивов, но по крайней мере может отсортировать массивы всех возможных размеров.
Вот модифицированная и инструментальная версия:
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#define MAX_LEVELS 64
int quickSort(int *arr, size_t elements) {
size_t beg[MAX_LEVELS], end[MAX_LEVELS], L, R;
int i = 0;
beg[0] = 0;
end[0] = elements;
while (i >= 0) {
L = beg[i];
R = end[i];
if (L + 1 < R--) {
int piv = arr[L];
if (i == MAX_LEVELS - 1)
return -1;
while (L < R) {
while (arr[R] >= piv && L < R)
R--;
if (L < R)
arr[L++] = arr[R];
while (arr[L] <= piv && L < R)
L++;
if (L < R)
arr[R--] = arr[L];
}
arr[L] = piv;
if (L - beg[i] > end[i] - R) {
beg[i + 1] = L + 1;
end[i + 1] = end[i];
end[i++] = L;
} else {
beg[i + 1] = beg[i];
end[i + 1] = L;
beg[i++] = L + 1;
}
} else {
i--;
}
}
return 0;
}
int testsort(int *a, size_t size, const char *desc) {
clock_t t = clock();
size_t i;
if (quickSort(a, size)) {
printf("%s: quickSort failure\n", desc);
return 1;
}
for (i = 1; i < size; i++) {
if (a[i - 1] > a[i]) {
printf("%s: sorting error: a[%zu]=%d > a[%zu]=%d\n",
desc, i - 1, a[i - 1], i, a[i]);
return 2;
}
}
t = clock() - t;
printf("%s: %zu elements sorted in %.3fms\n",
desc, size, t * 1000.0 / CLOCKS_PER_SEC);
return 0;
}
int main(int argc, char *argv[]) {
size_t i, size = argc > 1 ? strtoull(argv[1], NULL, 0) : 1000;
int *a = malloc(sizeof(*a) * size);
if (a != NULL) {
for (i = 0; i < size; i++)
a[i] = rand();
testsort(a, size, "random");
for (i = 0; i < size; i++)
a[i] = i;
testsort(a, size, "sorted");
for (i = 0; i < size; i++)
a[i] = size - i;
testsort(a, size, "reverse sorted");
for (i = 0; i < size; i++)
a[i] = 0;
testsort(a, size, "constant");
free(a);
}
return 0;
}
Выход:
random: 100000 elements sorted in 7.379ms
sorted: 100000 elements sorted in 2799.752ms
reverse sorted: 100000 elements sorted in 2768.844ms
constant: 100000 elements sorted in 2786.612ms
Вот немного модифицированная версия, более устойчивая к патологическим случаям:
#define MAX_LEVELS 48
int quickSort(int *arr, size_t elements) {
size_t beg[MAX_LEVELS], end[MAX_LEVELS], L, R;
int i = 0;
beg[0] = 0;
end[0] = elements;
while (i >= 0) {
L = beg[i];
R = end[i];
if (R - L > 1) {
size_t M = L + ((R - L) >> 1);
int piv = arr[M];
arr[M] = arr[L];
if (i == MAX_LEVELS - 1)
return -1;
R--;
while (L < R) {
while (arr[R] >= piv && L < R)
R--;
if (L < R)
arr[L++] = arr[R];
while (arr[L] <= piv && L < R)
L++;
if (L < R)
arr[R--] = arr[L];
}
arr[L] = piv;
M = L + 1;
while (L > beg[i] && arr[L - 1] == piv)
L--;
while (M < end[i] && arr[M] == piv)
M++;
if (L - beg[i] > end[i] - M) {
beg[i + 1] = M;
end[i + 1] = end[i];
end[i++] = L;
} else {
beg[i + 1] = beg[i];
end[i + 1] = L;
beg[i++] = M;
}
} else {
i--;
}
}
return 0;
}
Выход:
random: 10000000 elements sorted in 963.973ms
sorted: 10000000 elements sorted in 167.621ms
reverse sorted: 10000000 elements sorted in 167.375ms
constant: 10000000 elements sorted in 9.335ms
В заключение:
- да, быстрая сортировка может быть реализована без рекурсии,
- нет, это невозможно реализовать без локального автоматического хранения,
- да только постоянный объем дополнительного пространства необходим, но только потому, что мы живем, это маленький мир, где максимальный размер массива ограничен доступной памятью. Размер 64 для локальных объектов обрабатывает массивы, превышающие размер Интернета, намного больше, чем существующие 64-битные системы.