Когда я открываю свой файл .dot с помощью Microsoft Word или Pycharm, он показывает мне код и код не содержит ошибок, но не отображает предполагаемую графику.
Я интенсивно искал в Google решение, но Google настаивает на том, что Microsoft Word предлагает возможность читать файлы .dot (которые, похоже, могут читать код, но не отображать графику). Я скачал плагин для чтения pycharm .dot, и теперь pycharm может читать код, и он говорит, что код не содержит ошибок, но опять же он не отображает графику.
Я не уверен, какой код необходим, поэтому я просто даю все это.
digraph Tree {
node [shape=box, style="filled, rounded", color="black", fontname=helvetica] ;
edge [fontname=helvetica] ;
0 [label="failures <= 0.5\nsamples = 100.0%\nvalue = [0.502, 0.498]\nclass = fail", fillcolor="#e5813902"] ;
1 [label="higher_no <= 0.5\nsamples = 84.8%\nvalue = [0.422, 0.578]\nclass = pass", fillcolor="#399de545"] ;
0 -> 1 [labeldistance=2.5, labelangle=45, headlabel="True"] ;
2 [label="school_GP <= 0.5\nsamples = 79.2%\nvalue = [0.386, 0.614]\nclass = pass", fillcolor="#399de55e"] ;
1 -> 2 ;
3 [label="absences <= 1.5\nsamples = 23.0%\nvalue = [0.574, 0.426]\nclass = fail", fillcolor="#e5813942"] ;
2 -> 3 ;
4 [label="freetime <= 4.5\nsamples = 12.4%\nvalue = [0.419, 0.581]\nclass = pass", fillcolor="#399de547"] ;
3 -> 4 ;
5 [label="samples = 11.6%\nvalue = [0.379, 0.621]\nclass = pass", fillcolor="#399de563"] ;
4 -> 5 ;
6 [label="samples = 0.8%\nvalue = [1.0, 0.0]\nclass = fail", fillcolor="#e58139ff"] ;
4 -> 6 ;
7 [label="health <= 1.5\nsamples = 10.6%\nvalue = [0.755, 0.245]\nclass = fail", fillcolor="#e58139ac"] ;
3 -> 7 ;
8 [label="samples = 2.2%\nvalue = [0.455, 0.545]\nclass = pass", fillcolor="#399de52a"] ;
7 -> 8 ;
9 [label="samples = 8.4%\nvalue = [0.833, 0.167]\nclass = fail", fillcolor="#e58139cc"] ;
7 -> 9 ;
10 [label="Walc <= 3.5\nsamples = 56.2%\nvalue = [0.31, 0.69]\nclass = pass", fillcolor="#399de58d"] ;
2 -> 10 ;
11 [label="Medu <= 3.5\nsamples = 46.4%\nvalue = [0.263, 0.737]\nclass = pass", fillcolor="#399de5a4"] ;
10 -> 11 ;
12 [label="samples = 29.4%\nvalue = [0.333, 0.667]\nclass = pass", fillcolor="#399de57f"] ;
11 -> 12 ;
13 [label="samples = 17.0%\nvalue = [0.141, 0.859]\nclass = pass", fillcolor="#399de5d5"] ;
11 -> 13 ;
14 [label="sex_M <= 0.5\nsamples = 9.8%\nvalue = [0.531, 0.469]\nclass = fail", fillcolor="#e581391d"] ;
10 -> 14 ;
15 [label="samples = 3.0%\nvalue = [0.267, 0.733]\nclass = pass", fillcolor="#399de5a2"] ;
14 -> 15 ;
16 [label="samples = 6.8%\nvalue = [0.647, 0.353]\nclass = fail", fillcolor="#e5813974"] ;
14 -> 16 ;
17 [label="reason_course <= 0.5\nsamples = 5.6%\nvalue = [0.929, 0.071]\nclass = fail", fillcolor="#e58139eb"] ;
1 -> 17 ;
18 [label="health <= 3.5\nsamples = 2.6%\nvalue = [0.846, 0.154]\nclass = fail", fillcolor="#e58139d1"] ;
17 -> 18 ;
19 [label="samples = 1.4%\nvalue = [1.0, 0.0]\nclass = fail", fillcolor="#e58139ff"] ;
18 -> 19 ;
20 [label="reason_home <= 0.5\nsamples = 1.2%\nvalue = [0.667, 0.333]\nclass = fail", fillcolor="#e581397f"] ;
18 -> 20 ;
21 [label="samples = 0.6%\nvalue = [0.333, 0.667]\nclass = pass", fillcolor="#399de57f"] ;
20 -> 21 ;
22 [label="samples = 0.6%\nvalue = [1.0, 0.0]\nclass = fail", fillcolor="#e58139ff"] ;
20 -> 22 ;
23 [label="samples = 3.0%\nvalue = [1.0, 0.0]\nclass = fail", fillcolor="#e58139ff"] ;
17 -> 23 ;
24 [label="Fjob_teacher <= 0.5\nsamples = 15.2%\nvalue = [0.947, 0.053]\nclass = fail", fillcolor="#e58139f1"] ;
0 -> 24 [labeldistance=2.5, labelangle=-45, headlabel="False"] ;
25 [label="Fjob_health <= 0.5\nsamples = 15.0%\nvalue = [0.96, 0.04]\nclass = fail", fillcolor="#e58139f4"] ;
24 -> 25 ;
26 [label="freetime <= 1.5\nsamples = 14.8%\nvalue = [0.973, 0.027]\nclass = fail", fillcolor="#e58139f8"] ;
25 -> 26 ;
27 [label="Mjob_at_home <= 0.5\nsamples = 0.6%\nvalue = [0.667, 0.333]\nclass = fail", fillcolor="#e581397f"] ;
26 -> 27 ;
28 [label="samples = 0.2%\nvalue = [0.0, 1.0]\nclass = pass", fillcolor="#399de5ff"] ;
27 -> 28 ;
29 [label="samples = 0.4%\nvalue = [1.0, 0.0]\nclass = fail", fillcolor="#e58139ff"] ;
27 -> 29 ;
30 [label="age <= 16.5\nsamples = 14.2%\nvalue = [0.986, 0.014]\nclass = fail", fillcolor="#e58139fb"] ;
26 -> 30 ;
31 [label="samples = 2.4%\nvalue = [0.917, 0.083]\nclass = fail", fillcolor="#e58139e8"] ;
30 -> 31 ;
32 [label="samples = 11.8%\nvalue = [1.0, 0.0]\nclass = fail", fillcolor="#e58139ff"] ;
30 -> 32 ;
33 [label="samples = 0.2%\nvalue = [0.0, 1.0]\nclass = pass", fillcolor="#399de5ff"] ;
25 -> 33 ;
34 [label="samples = 0.2%\nvalue = [0.0, 1.0]\nclass = pass", fillcolor="#399de5ff"] ;
24 -> 34 ;
}
Я ожидаю, что приведенный выше код отобразит дерево решений с цветовой кодировкой. Вместо этого Microsoft Word, Pycharm и Jupyter Notebook возвращают код.