В настоящее время у меня есть проблема с этой проблемой - это понимание, как симулировать 10 000 ничьих и исправить ковариаты.
Y
<int>
X1
<dbl>
X2
<dbl>
X3
<int>
1 4264 305.657 7.17 0
2 4496 328.476 6.20 0
3 4317 317.164 4.61 0
4 4292 366.745 7.02 0
5 4945 265.518 8.61 1
6 4325 301.995 6.88 0
6 rows
Это глава продуктового кода.
Что я уже сделал для других проблем, связанных с:
#5.
#using beta_hat
#create a matrix with all the Xs and numbers from 1-52
X <- cbind(rep(1,52), grocery$X1, grocery$X2, grocery$X3)
beta_hat <- solve((t(X) %*% X)) %*% t(X) %*% grocery$Y
round(t(beta_hat), 2)
#using lm formula and residuals
#lm formula
lm0 <- lm(formula = Y ~ X1 + X2 + X3, data = grocery)
#6.
residuals(lm0)[1:5]
Ниже приведено описание функции lm () в исходной функции:
Call:
lm(formula = Y ~ X1 + X2 + X3, data = grocery)
Residuals:
Min 1Q Median 3Q Max
-264.05 -110.73 -22.52 79.29 295.75
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 4149.8872 195.5654 21.220 < 2e-16 ***
X1 0.7871 0.3646 2.159 0.0359 *
X2 -13.1660 23.0917 -0.570 0.5712
X3 623.5545 62.6409 9.954 2.94e-13 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 143.3 on 48 degrees of freedom
Multiple R-squared: 0.6883, Adjusted R-squared: 0.6689
F-statistic: 35.34 on 3 and 48 DF, p-value: 3.316e-12
Результатом должен быть цикл, который может выполнять распределение выборки в t-тесте. Сейчас у меня есть еще одна проблема, которая фокусируется на подборе модели на основе данных.
Здесь мне дана истинная модель (для истинной гипотезы), но я не уверен, с чего начать цикл.