DirectRunner работает, но DataFlowRunner не работает - PullRequest
0 голосов
/ 17 марта 2019

мой прямой бегун работает нормально, за исключением того, что его не вставляют в bigquery. Хотя мой DataFlowRunner вообще не работает. У меня есть установочный файл и все. Он также не отображает никаких ошибок, поэтому мне сложно его отлаживать, помогите

import datetime
import logging
import json
import argparse
from datetime import datetime

import apache_beam as beam
import apache_beam.transforms.window as window

from apache_beam.io.filesystems import FileSystems

from apache_beam.options.pipeline_options import GoogleCloudOptions
from apache_beam.options.pipeline_options import PipelineOptions
from apache_beam.options.pipeline_options import SetupOptions
from apache_beam.options.pipeline_options import StandardOptions

# Configuration
# I set all the constant before creating the Pipeline Options
options = PipelineOptions()
options.view_as(StandardOptions).streaming = True
#options.view_as(StandardOptions).runner = 'DirectRunner'
options.view_as(SetupOptions).save_main_session = True
options.view_as(StandardOptions).runner = 'DataflowRunner'
google_cloud_options = options.view_as(GoogleCloudOptions)
google_cloud_options.project = '*******-230413'




def run(argv=None):
    """
    Define and run the pipeline.
    """
    """Build and run the pipeline."""
    parser = argparse.ArgumentParser()
    parser.add_argument(
      '--output',
         dest='output',
        required=True,
        help='GCS destination folder to save the images to (example: gs://BUCKET_NAME/path')
    group = parser.add_mutually_exclusive_group(required=True)
    group.add_argument(
      '--input_topic',
      help=('Input PubSub topic of the form '
            '"projects/<project name>/topics/<topic name>".'))
    known_args, pipeline_args = parser.parse_known_args(argv)


    # DoFn
    class ExtractHashtagsDoFn(beam.DoFn):
        def process(self, element):
            """
            Takes a text as input, search and return its content 
            """
            result = {'text': element}
            logging.info('{}'.format(result))
            yield result


    class SentimentAnalysisDoFn(beam.DoFn):
        def process(self, element):
            from google.cloud import language
            from google.gax.errors import RetryError

            client = language.LanguageServiceClient()
            document = language.types.Document(
                content=element['text'].encode('utf-8'),
                type='PLAIN_TEXT')

            try:
                response = client.analyze_sentiment(
                    document=document,
                    encoding_type='UTF8')
                sentiment = response.document_sentiment
                element['sentiment_score'] = sentiment.score
                element['sentiment_magnitude'] = sentiment.magnitude


            except RetryError:
                element['sentiment_score'] = None
                element['sentiment_magnitude'] = None


    #         logging.info('{}'.format(element))
            yield element


    class WriteToGCS(beam.DoFn):
        def __init__(self, outdir):
            #source_date=datetime.now().strftime("%Y%m%d-%H%M%S")
            self.outdir = outdir
        def process(self, element):
            element = json.dumps(element).encode('utf-8')
            source_date=datetime.now().strftime("%Y%m%d-%H%M%S")
            #outdir = known_args.output+'output'+format(source_date) +'.txt'
            writer = FileSystems.create(self.outdir+'output'+format(source_date) +'.txt','text/plain')
            writer.write(element)
            writer.close()


    # Define Composite Transforms
    class TextAnalysisTransform(beam.PTransform):
        def expand(self, pcoll):
            return(
                pcoll
                | 'Decode' >> beam.Map(lambda string: string.decode('utf8', 'ignore'))
                | 'ExtractHashtags' >> beam.ParDo(ExtractHashtagsDoFn())
                | 'SentimentAnalysis' >> beam.ParDo(SentimentAnalysisDoFn())
                |  'Save file' >> beam.ParDo(WriteToGCS(known_args.output))
            )



    class WindowingForOutputTransform(beam.PTransform):
        def expand(self, pcoll):
            import json
            return(
                pcoll
                | 'Pack' >> beam.Map(lambda x: (x, 1))
                | 'Windowing' >> beam.WindowInto(window.FixedWindows(5, 0))
                | 'GroupByKey' >> beam.GroupByKey()
                | 'Unpack' >> beam.Map(lambda x: x[0])
            )


    class SaveToBigQueryTransform(beam.PTransform):
        def expand(self, pcoll):
            # Define the Schema.
            from apache_beam.io.gcp.internal.clients import bigquery

            table_schema = bigquery.TableSchema()

            # Fields that use standard types.
            alpha_schema = bigquery.TableFieldSchema()
            alpha_schema.name = 'text'
            alpha_schema.type = 'string'
            alpha_schema.mode = 'nullable'
            table_schema.fields.append(alpha_schema)

            beta_schema = bigquery.TableFieldSchema()
            beta_schema.name = 'sentiment_score'
            beta_schema.type = 'float'
            beta_schema.mode = 'nullable'
            table_schema.fields.append(beta_schema)

            gamma_schema = bigquery.TableFieldSchema()
            gamma_schema.name = 'sentiment_magnitude'
            gamma_schema.type = 'float'
            gamma_schema.mode = 'nullable'
            table_schema.fields.append(gamma_schema)


            # Saving the output to BigQuery.
            return (
                pcoll
                | 'PrepareForOutput' >> WindowingForOutputTransform()
                | 'WriteToBigQuery' >> beam.io.WriteToBigQuery(
                    table='test',
                    dataset='testimport',
                    project='*******-230413',
                    schema=table_schema,  # Pass the defined table_schema
                    create_disposition=beam.io.BigQueryDisposition.CREATE_IF_NEEDED,
                    write_disposition=beam.io.BigQueryDisposition.WRITE_APPEND))

    with beam.Pipeline(options=options) as p:
        plumbing = (
            p
            | 'LoadTestData' >> beam.io.ReadFromPubSub(topic=known_args.input_topic).with_output_types(bytes)
            | 'decode' >> beam.Map(lambda x: json.loads(x.decode('utf-8')))
            | 'read_file' >> beam.FlatMap(lambda metadata: FileSystems.open('gs://%s/%s' % (metadata['bucket'], metadata['name'])))
            | 'TextAnalysis' >> TextAnalysisTransform()
            | 'StreamToBigQuery' >> SaveToBigQueryTransform()
            )

if __name__ == '__main__':
    logging.getLogger().setLevel(logging.INFO)
    run()

Что я здесь делаю не так? Также я создал таблицу bigquery при запуске прямого запуска, я не смог просмотреть предварительный просмотр таблицы, поэтому я выполнил запрос, чтобы увидеть содержимое таблицы, и в следующий раз он прекратил потоковую передачу.

...