Примеры приложений для проверки этого можно найти в https://github.com/codependent/event-carried-state-transfer/tree/avro
- kafka-xxx: собственные приложения
- spring-boot-xxx: приложения Spring Cloud Stream
Проблема в Сообщения Avro, созданные собственным источником Kafka, не могут быть распакованы приложениями Spring Cloud Stream Например:
Собственный производитель Kafka (kafka-customer-сервисный проект)
@Component
class CustomerProducer {
private val producer: KafkaProducer<Int, Customer>
init {
val props = Properties()
props[ProducerConfig.BOOTSTRAP_SERVERS_CONFIG] = "localhost:9092"
props[ProducerConfig.CLIENT_ID_CONFIG] = "kafka-customer-producer"
props[ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG] = IntegerSerializer::class.java.name
props[ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG] = KafkaAvroSerializer::class.java.name
props[AbstractKafkaAvroSerDeConfig.SCHEMA_REGISTRY_URL_CONFIG] = "http://localhost:8081"
props[AbstractKafkaAvroSerDeConfig.VALUE_SUBJECT_NAME_STRATEGY] = TopicRecordNameStrategy::class.java.name
producer = KafkaProducer(props)
}
fun sendCustomerEvent(customer: Customer) {
val record: ProducerRecord<Int, Customer> = ProducerRecord("customer", customer.id, customer)
producer.send(record)
}
}
Spring Cloud Stream Kafka Stream (spring-boot-shipping-service)
@StreamListener
@SendTo("output")
fun process(@Input("input") input: KStream<Int, Customer>, ...): KStream<Int, OrderShippedEvent> {
val serdeConfig = mapOf(
AbstractKafkaAvroSerDeConfig.SCHEMA_REGISTRY_URL_CONFIG to "http://localhost:8081")
val intSerde = Serdes.IntegerSerde()
val customerSerde = SpecificAvroSerde<Customer>()
customerSerde.configure(serdeConfig, false)
val stateStore: Materialized<Int, Customer, KeyValueStore<Bytes, ByteArray>> =
Materialized.`as`<Int, Customer, KeyValueStore<Bytes, ByteArray>>("customer-store")
.withKeySerde(intSerde)
.withValueSerde(customerSerde)
val customerTable: KTable<Int, Customer> = input.groupByKey(Serialized.with(intSerde, customerSerde))
.reduce({ _, y -> y }, stateStore)
...
В этом случаеПриложение Spring Cloud Stream отменяет маршализацию пустого клиентского DTO: {"id": 0, "name": "", "address": ""}
Теперь пытаемся наоборот, Spring CloudStream Producer и собственное приложение Kafka Streams :
Spring Cloud Stream Kafka Producer (spring-boot-customer-service)
spring:
application:
name: spring-boot-customer-service
cloud:
stream:
kafka:
bindings:
output:
producer:
configuration:
key:
serializer: org.apache.kafka.common.serialization.IntegerSerializer
bindings:
output:
destination: customer
contentType: application/*+avro
schema-registry-client:
endpoint: http://localhost:8081
---
@Service
class CustomerServiceImpl(private val customerKafkaProducer: Source) : CustomerService {
...
val message = MessageBuilder.withPayload(customer).setHeader(KafkaHeaders.MESSAGE_KEY, customer.id).build()
customerKafkaProducer.output().send(message)
...
Native Kafka Stream (kafka-shipping-service)
val builder = StreamsBuilder()
val streamsConfiguration = Properties()
streamsConfiguration[StreamsConfig.APPLICATION_ID_CONFIG] = "kafka-shipping-service"
//streamsConfiguration.put(StreamsConfig.DEFAULT_KEY_SERDE_CLASS_CONFIG, Serdes.ByteArray()::class.java.name)
//streamsConfiguration.put(StreamsConfig.DEFAULT_KEY_SERDE_CLASS_CONFIG, SpecificAvroSerde::class.java)
streamsConfiguration[StreamsConfig.BOOTSTRAP_SERVERS_CONFIG] = "http://localhost:9092"
streamsConfiguration[AbstractKafkaAvroSerDeConfig.SCHEMA_REGISTRY_URL_CONFIG] = "http://localhost:8081"
val serdeConfig = mapOf(
AbstractKafkaAvroSerDeConfig.SCHEMA_REGISTRY_URL_CONFIG to "http://localhost:8081",
AbstractKafkaAvroSerDeConfig.VALUE_SUBJECT_NAME_STRATEGY to TopicRecordNameStrategy::class.java.name
)
//val byteArraySerde = Serdes.ByteArray()
val intSerde = Serdes.IntegerSerde()
val customerSerde = SpecificAvroSerde<Customer>()
customerSerde.configure(serdeConfig, false)
val customerStream = builder.stream<Int, Customer>("customer",
Consumed.with(intSerde, customerSerde)) as KStream<Int, Customer>
val stateStore: Materialized<Int, Customer, KeyValueStore<Bytes, ByteArray>> =
Materialized.`as`<Int, Customer, KeyValueStore<Bytes, ByteArray>>("customer-store")
.withKeySerde(intSerde)
.withValueSerde(customerSerde)
val customerTable = customerStream
.map { key, value -> KeyValue(key, value) }
.groupByKey(Serialized.with(intSerde, customerSerde))
.reduce({ _, y -> y }, stateStore)
В этом случае dir нативного приложениясбои с исключением (org.apache.kafka.common.errors.SerializationException: Unknown magic byte!
)
Exception in thread "kafka-shipping-service-b89157ba-b21f-46ba-911d-97f6080d477e-StreamThread-1" org.apache.kafka.streams.errors.StreamsException: Deserialization exception handler is set to fail upon a deserialization error. If you would rather have the streaming pipeline continue after a deserialization error, please set the default.deserialization.exception.handler appropriately.
at org.apache.kafka.streams.processor.internals.RecordDeserializer.deserialize(RecordDeserializer.java:80)
at org.apache.kafka.streams.processor.internals.RecordQueue.maybeUpdateTimestamp(RecordQueue.java:160)
at org.apache.kafka.streams.processor.internals.RecordQueue.addRawRecords(RecordQueue.java:101)
at org.apache.kafka.streams.processor.internals.PartitionGroup.addRawRecords(PartitionGroup.java:136)
at org.apache.kafka.streams.processor.internals.StreamTask.addRecords(StreamTask.java:742)
at org.apache.kafka.streams.processor.internals.StreamThread.addRecordsToTasks(StreamThread.java:1023)
at org.apache.kafka.streams.processor.internals.StreamThread.runOnce(StreamThread.java:861)
at org.apache.kafka.streams.processor.internals.StreamThread.runLoop(StreamThread.java:805)
at org.apache.kafka.streams.processor.internals.StreamThread.run(StreamThread.java:774)
Caused by: org.apache.kafka.common.errors.SerializationException: Error deserializing Avro message for id -1
Caused by: org.apache.kafka.common.errors.SerializationException: Unknown magic byte!
Disconnected from the target VM, address: '127.0.0.1:57856', transport: 'socket'
Process finished with exit code 0
Как обеспечить совместимость сообщений, генерируемых производителями Spring Cloud Stream / производителями Native Kafka, в разнородной корпоративной среде, где могут быть потребители, которые могут бытьнечетко Spring Cloud Stream Приложения Katfka Stream и родные потоки Kafka?