Мы можем сделать это более компактно в tidyverse
, получив group_indices
из 'year', 'month', 'day' в group_by
, а затем создать 'date2' как число различных элементов'id' (n_distinct
)
librarytidyverse)
df1 %>%
group_by(date1 = group_indices(., year, month, day)) %>%
mutate(date2 = n_distinct(id))
# A tibble: 10 x 6
# Groups: date1 [6]
# year month day id date1 date2
# <int> <int> <int> <int> <int> <int>
# 1 2011 1 5 31 1 2
# 2 2011 1 14 22 2 2
# 3 2011 2 6 28 3 2
# 4 2011 2 17 41 4 2
# 5 2011 3 9 55 5 1
# 6 2011 1 5 34 1 2
# 7 2011 1 14 25 2 2
# 8 2011 2 6 36 3 2
# 9 2011 2 17 11 4 2
#10 2011 3 12 10 6 1
Или другой компактный вариант с data.table
(с использованием той же логики)
library(data.table)
setDT(df1)[, date1 := .GRP, .(year, month, day)][, date2 := uniqueN(id), date1][]
# year month day id date1 date2
# 1: 2011 1 5 31 1 2
# 2: 2011 1 14 22 2 2
# 3: 2011 2 6 28 3 2
# 4: 2011 2 17 41 4 2
# 5: 2011 3 9 55 5 1
# 6: 2011 1 5 34 1 2
# 7: 2011 1 14 25 2 2
# 8: 2011 2 6 36 3 2
# 9: 2011 2 17 11 4 2
#10: 2011 3 12 10 6 1
Или это может бытьсделано с interaction
и ave
из base R
df1$date1 <- with(df1, as.integer(interaction(year, month, day,
drop = TRUE, lex.order = TRUE)))
df1$date2 <- with(df1, ave(id, date1, FUN = function(x) length(unique(x))))
data
df1 <- structure(list(year = c(2011L, 2011L, 2011L, 2011L, 2011L, 2011L,
2011L, 2011L, 2011L, 2011L), month = c(1L, 1L, 2L, 2L, 3L, 1L,
1L, 2L, 2L, 3L), day = c(5L, 14L, 6L, 17L, 9L, 5L, 14L, 6L, 17L,
12L), id = c(31L, 22L, 28L, 41L, 55L, 34L, 25L, 36L, 11L, 10L
)), class = "data.frame", row.names = c(NA, -10L))