Я пытаюсь создать пример нейронной сети с прямой связью в tenorflow.js, изначально используя небольшой набор данных (только для POC).Есть 5 входных узлов и один выходной узел.Данные относятся к жилью, где есть несколько входных данных, и мы прогнозируем цену.
x_train:
[ [ 79545.45857, 5.682861322, 7.009188143, 4.09, 23086.8005 ],
[ 79248.64245, 6.002899808, 6.730821019, 3.09, 40173.07217 ],
[ 61287.06718, 5.86588984, 8.51272743, 5.13, 36882.1594 ],
[ 63345.24005, 7.188236095, 5.586728665, 3.26, 34310.24283 ],
[ 59982.19723, 5.040554523, 7.839387785, 4.23, 26354.10947 ],
...
]
y_train
[ [ 1059033.558 ],
[ 1505890.915 ],
[ 1058987.988 ],
[ 1260616.807 ],
[ 630943.4893 ],
...
]
const model = tf.sequential();
const config_hidden = {
inputShape: [5],
activation: 'sigmoid',
units: 6
}
const config_output = {
units: 1,
activation: 'sigmoid'
}
const hidden = tf.layers.dense(config_hidden);
const output = tf.layers.dense(config_output);
model.add(hidden);
model.add(output);
const optimizer = tf.train.sgd(0.5);
const config = {
optimizer: optimizer,
loss: 'meanSquaredError',
metrics: ['accuracy']
}
model.compile(config);
train_data().then(function () {
console.log('Training is Complete');
}
async function train_data() {
const options = {
shuffle: true,
epochs: 10,
batch_size: 100,
validationSplit: 0.1
}
for (let i = 0; i < 10; i++) {
const res = await model.fit(xs, ys, options);
console.log(res.history.loss[0]);
}
}
Модель прекрасно компилируется.Но потери при обучении модели огромны
Model Successfully Compiled
Epoch 1 / 10
eta=0.0 ====================================================================>
1058ms 235us/step - acc=0.00 loss=1648912629760.00 val_acc=0.00 val_loss=1586459705344.00
Epoch 2 / 10
eta=0.0 ====================================================================>
700ms 156us/step - acc=0.00 loss=1648913285120.00 val_acc=0.00 val_loss=1586459705344.00
Epoch 3 / 10
eta=0.0 ====================================================================>
615ms 137us/step - acc=0.00 loss=1648913022976.00 val_acc=0.00 val_loss=1586459705344.00
Epoch 4 / 10
eta=0.0 ====================================================================>
852ms 189us/step - acc=0.00 loss=1648913285120.00 val_acc=0.00 val_loss=1586459705344.00
Я подумал, что это может быть из-за того, что данные обучения не нормализованы.Таким образом, я взял среднее значение данных и разделил его
xs = xs.div(xs.mean(0));
x_train
[[1.1598413, 0.9507535, 1.003062 , 1.0272969, 0.6384002],
[1.1555134, 1.0042965, 0.9632258, 0.7761241, 1.1108726],
[0.8936182, 0.9813745, 1.2182286, 1.2885166, 1.0198718],
...,
Нет больших изменений в потере
Model Successfully Compiled
Epoch 1 / 10
eta=0.0 ====================================================================>
841ms 187us/step - acc=0.00 loss=1648912760832.00 val_acc=0.00 val_loss=1586459705344.00
Epoch 2 / 10
eta=0.0 ====================================================================>
613ms 136us/step - acc=0.00 loss=1648913154048.00 val_acc=0.00 val_loss=1586459705344.00
Epoch 3 / 10
eta=0.0 ====================================================================>
646ms 144us/step - acc=0.00 loss=1648913022976.00 val_acc=0.00 val_loss=1586459705344.00
Затем я также нормализовал вывод,
ys = ys.div(1000000);
Model Successfully Compiled
Epoch 1 / 10
eta=0.0 ====================================================================>
899ms 200us/step - acc=0.00 loss=0.202 val_acc=0.00 val_loss=0.161
Epoch 2 / 10
eta=0.0 ====================================================================>
667ms 148us/step - acc=0.00 loss=0.183 val_acc=0.00 val_loss=0.160
Epoch 3 / 10
eta=0.0 ====================================================================>
609ms 135us/step - acc=0.00 loss=0.182 val_acc=0.00 val_loss=0.159
Это привело к снижению потерь до десятичных цифр.Однако видно, что даже выполнение 10000 итераций для данных обучения существенно не уменьшает потери.Например,
Epoch 8 / 10
eta=0.0 ====================================================================>
502ms 112us/step - acc=0.00 loss=0.181 val_acc=0.00 val_loss=0.158
Epoch 9 / 10
eta=0.0 ====================================================================>
551ms 122us/step - acc=0.00 loss=0.181 val_acc=0.00 val_loss=0.158
Epoch 10 / 10
eta=0.0 ====================================================================>
470ms 104us/step - acc=0.00 loss=0.181 val_acc=0.00 val_loss=0.158
0.18076679110527039
Наконец, потери начинаются с отметки 0,202 и снижаются до отметки 0,180.Это приводит к неправильным прогнозам.
Это очень распространенный сценарий.Несколько входов имеют значения в разных диапазонах (например, данные корпуса, как указано выше).Несколько входов передаются в прямую нейронную сеть.Ожидается только один выход (цена в данном случае).
Вопросы: 1. Что я делаю не так в коде выше?2. Правильно ли я нормализую данные?3. Использую ли я правильную функцию потерь / оптимизатор / скорость обучения / активацию и т. Д. 4. Как узнать, хорошо ли работает модель 5. Есть ли какой-либо другой способ сделать это в tenorflow.js?