Один из способов - создать новый столбец, который будет помечать каждый цикл последовательных неубывающих значений уникальной меткой, а затем unstack
эти метки в столбцах.Каждый столбец DataFrame представлен в виде отдельного ряда данных.
# Example data, a bit different from yours
df = pd.DataFrame({'Distance': [0.0, 0.2, 0.4, 0.6, 14.0, 15.0,
0.0, 0.1, 14.0, 15.0,
0.0, 0.3],
'Time': ['06:00', '06:01', '06:02', '06:03', '06:44', '06:45',
'06:46', '06:47', '07:14', '07:15',
'07:16', '07:17']})
# Convert time strings to datetime if needed
df['Time'] = pd.to_datetime(df['Time'])
# Add column that labels each run of non-decreasing values
df['Vehicle'] = df['Distance'].diff().lt(0).cumsum()
df
Time Distance Vehicle
0 2019-03-29 06:00:00 0.0 0
1 2019-03-29 06:01:00 0.2 0
2 2019-03-29 06:02:00 0.4 0
3 2019-03-29 06:03:00 0.6 0
4 2019-03-29 06:44:00 14.0 0
5 2019-03-29 06:45:00 15.0 0
6 2019-03-29 06:46:00 0.0 1
7 2019-03-29 06:47:00 0.1 1
8 2019-03-29 07:14:00 14.0 1
9 2019-03-29 07:15:00 15.0 1
10 2019-03-29 07:16:00 0.0 2
11 2019-03-29 07:17:00 0.3 2
# Reshape to one column per vehicle
df.set_index(['Time', 'Vehicle'])['Distance'].unstack()
Vehicle 0 1 2
Time
2019-03-29 06:00:00 0.0 NaN NaN
2019-03-29 06:01:00 0.2 NaN NaN
2019-03-29 06:02:00 0.4 NaN NaN
2019-03-29 06:03:00 0.6 NaN NaN
2019-03-29 06:44:00 14.0 NaN NaN
2019-03-29 06:45:00 15.0 NaN NaN
2019-03-29 06:46:00 NaN 0.0 NaN
2019-03-29 06:47:00 NaN 0.1 NaN
2019-03-29 07:14:00 NaN 14.0 NaN
2019-03-29 07:15:00 NaN 15.0 NaN
2019-03-29 07:16:00 NaN NaN 0.0
2019-03-29 07:17:00 NaN NaN 0.3
# plot
df.set_index(['Time', 'Vehicle'])['Distance'].unstack().plot(marker='.')
