LSTM предсказывает только один класс в моем тестовом наборе.Я получил 0,99 на моем тренировочном наборе.
Я пытался добавить weight_decay и drop_layer, но это не сработало.Я использую word2vec + LSTM + FC
.Кроме того, я потерпел неудачу в тренировочном наборе перед добавлением BatchNorm1d
.
class lstmnet(nn.Module):
def __init__(self, config, emb_weights):
super(lstmnet, self).__init__()
self.embedding = nn.Embedding.from_pretrained(embeddings=emb_weights, freeze=config.emb_freeze)
self.lstm = nn.LSTM(input_size=config.input_size, hidden_size=config.hidden_size, num_layers=config.num_layers,
batch_first=True,
bidirectional=config.bidir)
if config.bidir:
self.l1 = nn.Sequential(nn.Linear(config.hidden_size * 2, config.l1_size), nn.BatchNorm1d(config.l1_size),
nn.ReLU(True))
else:
self.l1 = nn.Sequential(nn.Linear(config.hidden_size, config.l1_size), nn.BatchNorm1d(config.l1_size),
nn.ReLU(True))
self.l2 = nn.Sequential(nn.Linear(config.l1_size, config.l2_size), nn.BatchNorm1d(config.l2_size),
nn.ReLU(True))
self.l3 = nn.Sequential(nn.Linear(config.l2_size, config.num_classes))
def forward(self, x):
x = self.embedding(x)
out, _ = self.lstm(x)
out = out[:, -1, :]
out = self.l1(out)
out = self.l2(out)
out = self.l3(out)
return out
Мой тренировочный комплект сбалансирован.