Keras & Tensorflow использует графический процессор при построении модели - PullRequest
1 голос
/ 29 июня 2019

После создания следующей модели Keras я получаю предупреждения о тензорном потоке , которые обычно появляются только при начале обучения .Когда я использую один и тот же подход с разными моделями, я не получаю одно и то же предупреждение.Это почему?Я не вижу в коде ничего, что должно каким-либо образом использовать графические процессоры.

Предупреждения:

Using TensorFlow backend.
WARNING:tensorflow:From /home/xxx/PycharmProjects/WAVE/venv/lib/python3.6/site-packages/tensorflow/python/framework/op_def_library.py:263: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.
Instructions for updating:
Colocations handled automatically by placer.
2019-06-29 13:49:23.902006: I tensorflow/core/platform/profile_utils/cpu_utils.cc:94] CPU Frequency: 4200000000 Hz
2019-06-29 13:49:23.902465: I tensorflow/compiler/xla/service/service.cc:150] XLA service 0x2177cd0 executing computations on platform Host. Devices:
2019-06-29 13:49:23.902480: I tensorflow/compiler/xla/service/service.cc:158]   StreamExecutor device (0): <undefined>, <undefined>
2019-06-29 13:49:24.084793: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:998] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2019-06-29 13:49:24.086719: I tensorflow/compiler/xla/service/service.cc:150] XLA service 0x20fc0a0 executing computations on platform CUDA. Devices:
2019-06-29 13:49:24.086730: I tensorflow/compiler/xla/service/service.cc:158]   StreamExecutor device (0): GeForce GTX 1070, Compute Capability 6.1
2019-06-29 13:49:24.086911: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1433] Found device 0 with properties: 
name: GeForce GTX 1070 major: 6 minor: 1 memoryClockRate(GHz): 1.835
pciBusID: 0000:01:00.0
totalMemory: 7.93GiB freeMemory: 7.16GiB
2019-06-29 13:49:24.086918: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1512] Adding visible gpu devices: 0
2019-06-29 13:49:24.088823: I tensorflow/core/common_runtime/gpu/gpu_device.cc:984] Device interconnect StreamExecutor with strength 1 edge matrix:
2019-06-29 13:49:24.088832: I tensorflow/core/common_runtime/gpu/gpu_device.cc:990]      0 
2019-06-29 13:49:24.088836: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1003] 0:   N 
2019-06-29 13:49:24.088981: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1115] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 6966 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1070, pci bus id: 0000:01:00.0, compute capability: 6.1)

Ниже приведен полный код для воспроизводимости.

Полный код:

from keras.models import Model
from keras.layers import Input, Activation, Dense, Flatten
from keras.layers import Conv2D, MaxPooling2D, AveragePooling2D
from keras.layers import add
from keras.layers import BatchNormalization
from keras.regularizers import l2
from keras import backend as K


def batch_norm(input, act):
    norm = BatchNormalization(axis=3)(input)
    return Activation(act)(norm)


def conv_batch_norm(filters, kernel_size, strides, padding, kernel_initializer, kernel_regularizer, act):

    def f(input):
        conv = Conv2D(filters=filters, kernel_size=kernel_size,
                      strides=strides, padding=padding,
                      kernel_initializer=kernel_initializer,
                      kernel_regularizer=kernel_regularizer)(input)
        return batch_norm(conv, act=act)

    return f


def batch_norm_conv(act='relu', **conv_params):
    filters = conv_params['filters']
    kernel_size = conv_params['kernel_size']
    strides = conv_params.setdefault('strides', (1, 1))
    kernel_initializer = conv_params.setdefault('kernel_initializer', 'he_normal')
    padding = conv_params.setdefault('padding', 'same')
    kernel_regularizer = conv_params.setdefault('kernel_regularizer', l2(1.e-4))

    def f(input):
        activation = batch_norm(input, act=act)
        return Conv2D(filters=filters, kernel_size=kernel_size,
                      strides=strides, padding=padding,
                      kernel_initializer=kernel_initializer,
                      kernel_regularizer=kernel_regularizer)(activation)

    return f


def shortcut(input, residual):
    input_shape = K.int_shape(input)
    residual_shape = K.int_shape(residual)
    stride_width = int(round(input_shape[1] / residual_shape[1]))
    stride_height = int(round(input_shape[2] / residual_shape[2]))
    equal_channels = input_shape[3] == residual_shape[3]

    shortcut = input
    if stride_width > 1 or stride_height > 1 or not equal_channels:
        shortcut = Conv2D(filters=residual_shape[3],
                          kernel_size=(1, 1),
                          strides=(stride_width, stride_height),
                          padding='valid',
                          kernel_initializer='he_normal',
                          kernel_regularizer=l2(0.0001))(input)

    return add([shortcut, residual])


def residual_block(block_function, filters, repetitions, is_first_layer=False):
    def f(input):
        for i in range(repetitions):
            init_strides = (1, 1)
            if i == 0 and not is_first_layer:
                init_strides = (2, 2)
            input = block_function(filters=filters, init_strides=init_strides,
                                   is_first_block_of_first_layer=(is_first_layer and i == 0))(input)
        return input

    return f


def basic_block(filters, init_strides=(1, 1), is_first_block_of_first_layer=False):
    def f(input):

        if is_first_block_of_first_layer:
            conv1 = Conv2D(filters=filters, kernel_size=(3, 3),
                           strides=init_strides,
                           padding='same',
                           kernel_initializer='he_normal',
                           kernel_regularizer=l2(1e-4))(input)
        else:
            conv1 = batch_norm_conv(filters=filters, kernel_size=(3, 3),
                                    strides=init_strides, act='relu')(input)

        residual = batch_norm_conv(filters=filters, kernel_size=(3, 3), act='relu')(conv1)
        return shortcut(input, residual)

    return f


def bottleneck(filters, init_strides=(1, 1), is_first_block_of_first_layer=False):
    def f(input):

        if is_first_block_of_first_layer:
            conv_1_1 = Conv2D(filters=filters, kernel_size=(1, 1),
                              strides=init_strides,
                              padding='same',
                              kernel_initializer='he_normal',
                              kernel_regularizer=l2(1e-4))(input)
        else:
            conv_1_1 = batch_norm_conv(filters=filters, kernel_size=(1, 1),
                                       strides=init_strides, act='relu')(input)

        conv_3_3 = batch_norm_conv(filters=filters, kernel_size=(3, 3), act='relu')(conv_1_1)
        residual = batch_norm_conv(filters=filters * 4, kernel_size=(1, 1), act='relu')(conv_3_3)
        return shortcut(input, residual)

    return f


def RESNET_NN(input_shape, num_outputs, block_fn, repetitions):
    kernel_initializer = 'he_normal'
    kernel_regularizer = l2(1.e-4)
    padding = 'same'

    input = Input(shape=input_shape)
    conv1 = conv_batch_norm(filters=64, kernel_size=(7, 7), strides=(2, 2), act='relu',
                            kernel_initializer=kernel_initializer, kernel_regularizer=kernel_regularizer,
                            padding=padding)(input)

    pool1 = MaxPooling2D(pool_size=(3, 3), strides=(2, 2), padding='same')(conv1)

    block = pool1
    filters = 64
    for i, r in enumerate(repetitions):
        block = residual_block(block_fn, filters=filters, repetitions=r, is_first_layer=(i == 0))(block)
        filters *= 2

    # Last activation
    block = batch_norm(block, act='relu')

    # Classifier block
    block_shape = K.int_shape(block)
    pool2 = AveragePooling2D(pool_size=(block_shape[1], block_shape[2]),
                             strides=(1, 1))(block)
    flatten1 = Flatten()(pool2)
    dense = Dense(units=num_outputs, kernel_initializer='he_normal',
                  activation='softmax')(flatten1)

    model = Model(inputs=input, outputs=dense)

    model.compile(loss='categorical_crossentropy',
                  optimizer='adam',
                  metrics=['acc'])

    model.summary()
    return model


model = RESNET_NN(input_shape=(13, 49, 1), num_outputs=9, block_fn=basic_block, repetitions=[2, 2, 2, 2])

Добро пожаловать на сайт PullRequest, где вы можете задавать вопросы и получать ответы от других членов сообщества.
...