Как объединить N прямоугольников, которые пересекаются, и сделать их одним большим прямоугольником в python, используя OpenCV и matplotlib? - PullRequest
0 голосов
/ 18 марта 2019

Я не могу найти код, чтобы объединить N прямоугольников, которые пересекаются, и сделать их одним большим прямоугольником в Python, используя OpenCV и matplotlib. Может ли кто-нибудь дать мне пример?

У меня есть этот код, но есть много ошибок в этом, пожалуйста, помогите.

Как объединить N прямоугольников, которые пересекаются, и сделать их одним большим прямоугольником в python, используя OpenCV и matplotlib?

enter code here
ap = argparse.ArgumentParser()
ap.add_argument("-t", "--template", required=True, help="Path to template image")
ap.add_argument("-i", "--images", required=True,
    help="Path to images where template will be matched")
ap.add_argument("-v", "--visualize",
    help="Flag indicating whether or not to visualize each iteration")
args = vars(ap.parse_args())
# load the image image, convert it to grayscale, and detect edges
template = cv2.imread(args["plot.png"])
template = cv2.cvtColor(template, cv2.COLOR_BGR2GRAY)
template = cv2.Canny(template, 50, 200)
(tH, tW) = template.shape[:2]
cv2.imshow("Template", template)
# loop over the images to find the template in
for imagePath in glob.glob(args["images"] + "/*.jpg"):
    # load the image, convert it to grayscale, and initialize the
    # bookkeeping variable to keep track of the matched region
    image = cv2.imread(imagePath)
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    found = None

    # loop over the scales of the image
    for scale in np.linspace(0.2, 1.0, 20)[::-1]:
        # resize the image according to the scale, and keep track
        # of the ratio of the resizing
        resized = imutils.resize(gray, width = int(gray.shape[1] * scale))
        r = gray.shape[1] / float(resized.shape[1])

        # if the resized image is smaller than the template, then break
        # from the loop
        if resized.shape[0] < tH or resized.shape[1] < tW:
            break
            # matching to find the template in the image
        edged = cv2.Canny(resized, 50, 200)
        result = cv2.matchTemplate(edged, template, cv2.TM_CCOEFF)
        (_, maxVal, _, maxLoc) = cv2.minMaxLoc(result)

        # check to see if the iteration should be visualized
        if args.get("visualize", False):
            # draw a bounding box around the detected region
            clone = np.dstack([edged, edged, edged])
            cv2.rectangle(clone, (maxLoc[0], maxLoc[1]),
                (maxLoc[0] + tW, maxLoc[1] + tH), (0, 0, 255), 2)
            cv2.imshow("Visualize", clone)
            cv2.waitKey(0)

        # if we have found a new maximum correlation value, then update
        # the bookkeeping variable
        if found is None or maxVal > found[0]:
            found = (maxVal, maxLoc, r)

    # unpack the bookkeeping variable and compute the (x, y) coordinates
    # of the bounding box based on the resized ratio
    (_, maxLoc, r) = found
    (startX, startY) = (int(maxLoc[0] * r), int(maxLoc[1] * r))
    (endX, endY) = (int((maxLoc[0] + tW) * r), int((maxLoc[1] + tH) * r))

    # draw a bounding box around the detected result and display the image
    cv2.rectangle(image, (startX, startY), (endX, endY), (0, 0, 255), 2)
    cv2.imshow("Image", image)
    cv2.waitKey(0)
Добро пожаловать на сайт PullRequest, где вы можете задавать вопросы и получать ответы от других членов сообщества.
...