Я пытаюсь создать анимацию для больших данных с динамической сеткой (океанские волны). Мне удалось написать сценарий, который работает, но это требует много времени и ресурсов. Я надеялся, что кто-нибудь сможет увидеть, что я могу улучшить в своем коде, чтобы ускорить его.
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib
from matplotlib import animation as anim
import xarray as xr
import PySimpleGUI as sg
import sys
#file importing mechanism
jan = xr.open_dataset('Model/Bar_mig/xboutput_equi.nc')
########################## labeling the variables in the data-set ##############
nx = jan.variables['globalx']
globaltime = jan.variables['globaltime']
zb = jan.variables['zb'][:,0,:]
zs = jan.variables['zs'][:,0,:]
ccz = jan.variables['ccz'][:,:,0,:]
uz = jan.variables['uz'][:,:,0,:]
nz = np.array(range(0,100))
nx = (np.array(range(0,nx.size)))
globaltime_ar = np.array(globaltime)
conc = np.vstack(globaltime_ar)
newdf = pd.DataFrame(conc)
itr = len(newdf.index)
uz1=np.flip(uz,0)
uz2=np.flip(np.flip(uz1,1),axis=0)
depth1 = (zb)
a = np.array(depth1)
b = pd.DataFrame(a)
depth = b.dropna(axis=1, how='all')
zba1 = (np.array(zb))
zsa1 = (np.array(-zs))
zba = pd.DataFrame(zba1)
zsa = pd.DataFrame(zsa1)
Вот так я настраиваю динамическую сетку. ( пример вывода )
#dynamic grid
for w in range(0,itr):
AA=[]
sizer = depth.iloc[w,]
sizer1 = sizer.dropna(axis=0, how='all')
for j in range(0,sizer1.size):
maxi = -zsa.iloc[w,j]
mini = depth.iloc[w,j]
step = mini/nz.shape[-1]
globals()['col_{}'.format(j)] = pd.DataFrame(np.linspace(maxi,mini,nz.shape[-1],endpoint=True))
globals()['col_{}'.format(j)] = globals()['col_{}'.format(j)].reset_index(drop=True)
AA.append(globals()['col_{}'.format(j)])
globals()['df_{}'.format(w)] = pd.concat(AA, axis=1).iloc[:nz.size]
globals()['df_{}'.format(w)].columns = range(globals()['df_{}'.format(w)].shape[1])
AA.clear()
sg.OneLineProgressMeter('My meter title', w, itr-1, 'key')
from matplotlib import animation as anim
fig = plt.figure(figsize=(15,7.5)) # Create a dummy figure
ax = plt.axes() # Set the axis rigid
mywriter = anim.FFMpegWriter()
scale=1
def animate(w):
w = w*scale
plt.clf()
plt.title(str(w) + 'hr')
y = globals()['df_{}'.format(w)]
x = np.array([nx,nx,nx,nx,nx,nx,nx,nx,nx,nx,nx,nx,nx,nx,nx,nx,nx,nx,nx,nx,nx,nx,nx,nx,nx,nx,nx,nx,nx,nx,nx,nx,nx,nx,nx,nx,nx,nx,nx,nx,nx,nx,nx,nx,nx,nx,nx,nx,nx,nx,nx,nx,nx,nx,nx,nx,nx,nx,nx,nx,nx,nx,nx,nx,nx,nx,nx,nx,nx,nx,nx,nx,nx,nx,nx,nx,nx,nx,nx,nx,nx,nx,nx,nx,nx,nx,nx,nx,nx,nx,nx,nx,nx,nx,nx,nx,nx,nx,nx,nx])
data2 = np.flip(ccz[w*1,:,:],0)
cont = plt.pcolor(x,y,np.array(data2), cmap = 'jet',
vmin = 0, vmax = 0.03
)
plt.colorbar(label='Concentration Profile ($m^3/m^3$)')
plt.fill_between(nx,min(zb[0])-1,zb[w],color = 'yellow')
point = 350
plt.xlim(point,nx.shape[-1])
plt.ylim(min(zb[0,point:point+1]),max(zb[0,point:]))
plt.xlabel('Cross shore distance (m)')
plt.ylabel('Depth (m)')
fig.tight_layout()
return cont,
ani = anim.FuncAnimation(fig, animate, interval = 1, frames=itr)
ani.save('Sed_Con.mp4', writer=mywriter)