Похожий вопрос без ответа был задан здесь .
Я тестирую один алгоритм обучения с глубоким подкреплением, который использует keras backend в tenorflow Я не очень знаком с tf.keras, но все же хотел бы добавить слои нормализации партии. Поэтому я пытаюсь использовать tf.keras.layers.BatchNormalization()
, но он не обновляет средние значения и отклонения, потому что update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
пусто.
Использование обычного tf.layers.batch_normalization
, кажется, работает нормально. Однако, поскольку полный алгоритм несколько сложен, Мне нужно найти способ использовать tf.keras
.
Стандартный tf
слой batch_normed = tf.layers.batch_normalization(hidden, training=True)
обновляет средние значения, поскольку update_ops
не является пустым:
[
<tf.Operation 'batch_normalization/AssignMovingAvg' type=AssignSub>,
<tf.Operation 'batch_normalization/AssignMovingAvg_1' type=AssignSub>,
<tf.Operation 'batch_normalization_1/AssignMovingAvg' type=AssignSub>,
<tf.Operation 'batch_normalization_1/AssignMovingAvg_1' type=AssignSub>
]
Минимальный пример, который не работает:
import tensorflow as tf
import numpy as np
tf.reset_default_graph()
graph = tf.get_default_graph()
tf.keras.backend.set_learning_phase(True)
input_shapes = [(3, )]
hidden_layer_sizes = [16, 16]
inputs = [
tf.keras.layers.Input(shape=input_shape)
for input_shape in input_shapes
]
concatenated = tf.keras.layers.Lambda(
lambda x: tf.concat(x, axis=-1)
)(inputs)
out = concatenated
for units in hidden_layer_sizes:
hidden = tf.keras.layers.Dense(
units, activation=None
)(out)
batch_normed = tf.keras.layers.BatchNormalization()(hidden, training=True)
#batch_normed = tf.layers.batch_normalization(hidden, training=True)
out = tf.keras.layers.Activation('relu')(batch_normed)
out = tf.keras.layers.Dense(
units=1, activation='linear'
)(out)
data = np.random.rand(100,3)
with tf.Session(graph=graph) as sess:
sess.run(tf.global_variables_initializer())
for i in range(10):
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
sess.run(update_ops, {inputs[0]: data})
sess.run(out, {inputs[0]: data})
variables = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,
scope='batch_normalization')
bn_gamma, bn_beta, bn_moving_mean, bn_moving_variance = [], [], [], []
for variable in variables:
val = sess.run(variable)
nv = np.linalg.norm(val)
if 'gamma' in variable.name:
bn_gamma.append(nv)
if 'beta' in variable.name:
bn_beta.append(nv)
if 'moving_mean' in variable.name:
bn_moving_mean.append(nv)
if 'moving_variance' in variable.name:
bn_moving_variance.append(nv)
diagnostics = {
'bn_Q_gamma': np.mean(bn_gamma),
'bn_Q_beta': np.mean(bn_beta),
'bn_Q_moving_mean': np.mean(bn_moving_mean),
'bn_Q_moving_variance': np.mean(bn_moving_variance),
}
print(diagnostics)
Вывод следующий (вы можете видеть, что moving_mean и moving_variance не меняются):
{'bn_Q_gamma': 4.0, 'bn_Q_beta': 0.0, 'bn_Q_moving_mean': 0.0, 'bn_Q_moving_variance': 4.0}
{'bn_Q_gamma': 4.0, 'bn_Q_beta': 0.0, 'bn_Q_moving_mean': 0.0, 'bn_Q_moving_variance': 4.0}
{'bn_Q_gamma': 4.0, 'bn_Q_beta': 0.0, 'bn_Q_moving_mean': 0.0, 'bn_Q_moving_variance': 4.0}
{'bn_Q_gamma': 4.0, 'bn_Q_beta': 0.0, 'bn_Q_moving_mean': 0.0, 'bn_Q_moving_variance': 4.0}
{'bn_Q_gamma': 4.0, 'bn_Q_beta': 0.0, 'bn_Q_moving_mean': 0.0, 'bn_Q_moving_variance': 4.0}
{'bn_Q_gamma': 4.0, 'bn_Q_beta': 0.0, 'bn_Q_moving_mean': 0.0, 'bn_Q_moving_variance': 4.0}
{'bn_Q_gamma': 4.0, 'bn_Q_beta': 0.0, 'bn_Q_moving_mean': 0.0, 'bn_Q_moving_variance': 4.0}
{'bn_Q_gamma': 4.0, 'bn_Q_beta': 0.0, 'bn_Q_moving_mean': 0.0, 'bn_Q_moving_variance': 4.0}
{'bn_Q_gamma': 4.0, 'bn_Q_beta': 0.0, 'bn_Q_moving_mean': 0.0, 'bn_Q_moving_variance': 4.0}
{'bn_Q_gamma': 4.0, 'bn_Q_beta': 0.0, 'bn_Q_moving_mean': 0.0, 'bn_Q_moving_variance': 4.0}
Хотя ожидаемый результат выглядит примерно так (прокомментируйте строку с batch_normed
исчислением, используя tf.keras
и раскомментируйте тот, что ниже):
{'bn_Q_gamma': 4.0, 'bn_Q_beta': 0.0, 'bn_Q_moving_mean': 0.0148749575, 'bn_Q_moving_variance': 3.966927}
{'bn_Q_gamma': 4.0, 'bn_Q_beta': 0.0, 'bn_Q_moving_mean': 0.029601166, 'bn_Q_moving_variance': 3.934192}
{'bn_Q_gamma': 4.0, 'bn_Q_beta': 0.0, 'bn_Q_moving_mean': 0.04418011, 'bn_Q_moving_variance': 3.9017918}
{'bn_Q_gamma': 4.0, 'bn_Q_beta': 0.0, 'bn_Q_moving_mean': 0.05861327, 'bn_Q_moving_variance': 3.8697228}
{'bn_Q_gamma': 4.0, 'bn_Q_beta': 0.0, 'bn_Q_moving_mean': 0.0729021, 'bn_Q_moving_variance': 3.8379822}
{'bn_Q_gamma': 4.0, 'bn_Q_beta': 0.0, 'bn_Q_moving_mean': 0.08704803, 'bn_Q_moving_variance': 3.8065662}
{'bn_Q_gamma': 4.0, 'bn_Q_beta': 0.0, 'bn_Q_moving_mean': 0.10105251, 'bn_Q_moving_variance': 3.7754717}
{'bn_Q_gamma': 4.0, 'bn_Q_beta': 0.0, 'bn_Q_moving_mean': 0.11491694, 'bn_Q_moving_variance': 3.7446957}
{'bn_Q_gamma': 4.0, 'bn_Q_beta': 0.0, 'bn_Q_moving_mean': 0.12864274, 'bn_Q_moving_variance': 3.7142346}
{'bn_Q_gamma': 4.0, 'bn_Q_beta': 0.0, 'bn_Q_moving_mean': 0.14223127, 'bn_Q_moving_variance': 3.6840856}
Примечание
Даже с tf.layers.batch_normalization
есть что-то подозрительное. Стандартный tf
подход tf.control_dependencies
:
with tf.control_dependencies(update_ops):
sess.run(out, {inputs[0]: data})
, который я помещаю вместо следующих двух строк в коде выше:
sess.run(update_ops, {inputs[0]: data})
sess.run(out, {inputs[0]: data})
производит bn_Q_moving_mean = 0.0
и bn_Q_moving_variance = 4.0