Вы должны объединить оба фрейма данных и затем выполнить case (If-Else)
выражение или coalesce
функцию.
Это можно сделать несколькими способами, вот несколько примеров.
Option1: Использование функции coalesce
в качестве альтернативы CASE-WHEN-NULL
from pyspark.sql.functions import coalesce, lit,abs
cond = [df1.Plant == df2.Plant, df1.Art_nr == df2.Art_nr]
df1.join(df2,cond,'full') \
.select(coalesce(df1.Plant,df2.Plant).alias('Plant')
,coalesce(df1.Art_nr,df2.Art_nr).alias('Art_nr')
,abs(coalesce(df1.Tot,lit(0)) - coalesce(df2.Tot,lit(0))).alias('Tot')
).show()
Option2: Использовать case
выражение в selectExpr()
cond = [df1.Plant == df2.Plant, df1.Art_nr == df2.Art_nr]
df1.alias('a').join(df2.alias('b'),cond,'full') \
.selectExpr("CASE WHEN a.Plant IS NULL THEN b.Plant ELSE a.Plant END AS Plant",
"CASE WHEN a.Art_nr IS NULL THEN b.Art_nr ELSE a.Art_nr END AS Art_nr",
"abs(coalesce(a.Tot,0) - coalesce(b.Tot,0)) AS Tot") \
.show()
#+-----+------+---+
#|Plant|Art_nr|Tot|
#+-----+------+---+
#| A| X| 4|
#| B| Y| 4|
#| C| Z| 3|
#+-----+------+---+
Опция3: Использование when().otherwise()
from pyspark.sql.functions import when,coalesce, lit,abs
cond = [df1.Plant == df2.Plant, df1.Art_nr == df2.Art_nr]
df1.join(df2,cond,'full') \
.select(when(df1.Plant.isNull(),df2.Plant).otherwise(df1.Plant).alias('Plant')
,when(df1.Art_nr.isNull(),df2.Art_nr).otherwise(df1.Art_nr).alias('Art_nr')
,abs(coalesce(df1.Tot,lit(0)) - coalesce(df2.Tot,lit(0))).alias('Tot')
).show()
Выход:
#+-----+------+---+
#|Plant|Art_nr|Tot|
#+-----+------+---+
#| A| X| 4|
#| B| Y| 4|
#| C| Z| 3|
#+-----+------+---+