Я создал свой собственный набор данных, который представляет собой набор изображений футбольного мяча. Поскольку у меня есть только 1 класс, я изменил ball-yolov3-tiny.cfg
как настройку filters
на 18
и classes
на 1
.
Затем я аннотировал изображения и помещал созданные .txt
файлы в тот же каталог изображений. Наконец, я начал обучение, используя модель darknet53.conv.74
, выполнив команду darknet detector train custom/ball-obj.data custom/ball-yolov3-tiny.cfg darknet53.conv.74
.
У меня 134 изображения для обучения и 15 изображений для теста. Вот пример вывода тренировочного процесса:
95: 670.797241, 597.741333 avg, 0.000000 rate, 313.254830 seconds, 6080 images
Loaded: 0.000302 seconds
Region 16 Avg IOU: -nan, Class: -nan, Obj: -nan, No Obj: 0.499381, .5R: -nan, .75R: -nan, count: 0
Region 23 Avg IOU: 0.344946, Class: 0.498204, Obj: 0.496005, No Obj: 0.496541, .5R: 0.000000, .75R: 0.000000, count: 32
Region 16 Avg IOU: -nan, Class: -nan, Obj: -nan, No Obj: 0.499381, .5R: -nan, .75R: -nan, count: 0
Region 23 Avg IOU: 0.344946, Class: 0.498204, Obj: 0.496005, No Obj: 0.496541, .5R: 0.000000, .75R: 0.000000, count: 32
96: 670.557190, 605.022949 avg, 0.000000 rate, 312.962750 seconds, 6144 images
Loaded: 0.000272 seconds
Region 16 Avg IOU: -nan, Class: -nan, Obj: -nan, No Obj: 0.499360, .5R: -nan, .75R: -nan, count: 0
Region 23 Avg IOU: 0.344946, Class: 0.498204, Obj: 0.495868, No Obj: 0.496454, .5R: 0.000000, .75R: 0.000000, count: 32
Region 16 Avg IOU: -nan, Class: -nan, Obj: -nan, No Obj: 0.499360, .5R: -nan, .75R: -nan, count: 0
Region 23 Avg IOU: 0.344946, Class: 0.498204, Obj: 0.495868, No Obj: 0.496454, .5R: 0.000000, .75R: 0.000000, count: 32
97: 670.165161, 611.537170 avg, 0.000000 rate, 312.681998 seconds, 6208 images
Loaded: 0.000282 seconds
Region 16 Avg IOU: -nan, Class: -nan, Obj: -nan, No Obj: 0.499331, .5R: -nan, .75R: -nan, count: 0
Region 23 Avg IOU: 0.344946, Class: 0.498204, Obj: 0.495722, No Obj: 0.496397, .5R: 0.000000, .75R: 0.000000, count: 32
Region 16 Avg IOU: -nan, Class: -nan, Obj: -nan, No Obj: 0.499331, .5R: -nan, .75R: -nan, count: 0
Region 23 Avg IOU: 0.344946, Class: 0.498204, Obj: 0.495722, No Obj: 0.496397, .5R: 0.000000, .75R: 0.000000, count: 32
98: 669.815918, 617.365051 avg, 0.000000 rate, 319.203044 seconds, 6272 images
Loaded: 0.000244 seconds
Region 16 Avg IOU: -nan, Class: -nan, Obj: -nan, No Obj: 0.499294, .5R: -nan, .75R: -nan, count: 0
Region 23 Avg IOU: 0.344947, Class: 0.498204, Obj: 0.495569, No Obj: 0.496253, .5R: 0.000000, .75R: 0.000000, count: 32
Region 16 Avg IOU: -nan, Class: -nan, Obj: -nan, No Obj: 0.499294, .5R: -nan, .75R: -nan, count: 0
Region 23 Avg IOU: 0.344947, Class: 0.498204, Obj: 0.495569, No Obj: 0.496253, .5R: 0.000000, .75R: 0.000000, count: 32
99: 669.555664, 622.584106 avg, 0.000000 rate, 320.330266 seconds, 6336 images
Loaded: 0.000244 seconds
Region 16 Avg IOU: -nan, Class: -nan, Obj: -nan, No Obj: 0.499246, .5R: -nan, .75R: -nan, count: 0
Region 23 Avg IOU: 0.344948, Class: 0.498204, Obj: 0.495409, No Obj: 0.496197, .5R: 0.000000, .75R: 0.000000, count: 32
Region 16 Avg IOU: -nan, Class: -nan, Obj: -nan, No Obj: 0.499246, .5R: -nan, .75R: -nan, count: 0
Region 23 Avg IOU: 0.344948, Class: 0.498204, Obj: 0.495409, No Obj: 0.496197, .5R: 0.000000, .75R: 0.000000, count: 32
100: 669.132629, 627.238953 avg, 0.000000 rate, 329.954091 seconds, 6400 images
Saving weights to backup//ball-yolov3-tiny.backup
Saving weights to backup//ball-yolov3-tiny_100.weights
Resizing
576
Loaded: 1.764142 seconds
Region 16 Avg IOU: -nan, Class: -nan, Obj: -nan, No Obj: 0.499216, .5R: -nan, .75R: -nan, count: 0
Region 23 Avg IOU: 0.430712, Class: 0.498203, Obj: 0.495251, No Obj: 0.496154, .5R: 0.000000, .75R: 0.000000, count: 32
Вот другие файлы конфигурации:
ball-obj.data
classes= 1
train = custom/ball-train.txt
valid = custom/ball-test.txt
names = custom/ball-obj.names
backup = backup/
шариковой obj.names
ball
Когда я использую созданные веса для тестирования одного изображения, просто не удается найти футбольные мячи на изображениях. Нужно ли мне больше (например, 10K) изображений для этого? Или мне нужно тренировать модель долгие часы? Я просто хочу быть уверен, что все, что касается моей настройки, в порядке.
Пожалуйста, не стесняйтесь задавать любые вопросы, касающиеся моего эксперимента. Ваша помощь очень ценится. Заранее спасибо.
p.s. Вот все содержание моего ball-yolov3-tiny.cnf
:
[net]
# Testing
batch=1
subdivisions=1
# Training
#batch=64
#subdivisions=2
width=416
height=416
channels=3
momentum=0.9
decay=0.0005
angle=0
saturation = 1.5
exposure = 1.5
hue=.1
learning_rate=0.001
burn_in=1000
max_batches = 500200
policy=steps
steps=400000,450000
scales=.1,.1
[convolutional]
batch_normalize=1
filters=16
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=32
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=1
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky
###########
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[convolutional]
size=1
stride=1
pad=1
filters=18
activation=linear
[yolo]
mask = 3,4,5
anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319
classes=1
num=6
jitter=.3
ignore_thresh = .7
truth_thresh = 1
random=1
[route]
layers = -4
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[upsample]
stride=2
[route]
layers = -1, 8
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[convolutional]
size=1
stride=1
pad=1
filters=18
activation=linear
[yolo]
mask = 0,1,2
anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319
classes=1
num=6
jitter=.3
ignore_thresh = .7
truth_thresh = 1
random=1
Я выполняю команду:
darknet detector train custom/ball-obj.data custom/ball-yolov3-tiny.cfg darknet53.conv.74