У меня есть набор данных с 21000 строками (выборками данных) и 102 столбцами (функциями).Я хотел бы иметь больший синтетический набор данных, сгенерированный на основе текущего набора данных, скажем, с 100000 строк, чтобы я мог таким образом использовать его для целей машинного обучения.
Я имел в виду ответ @Prashant наэтот пост https://stats.stackexchange.com/questions/215938/generate-synthetic-data-to-match-sample-data,, но я не могу заставить его работать над созданием большего синтетического набора данных для моих данных.
import numpy as np
from random import randrange, choice
from sklearn.neighbors import NearestNeighbors
import pandas as pd
#referring to https://stats.stackexchange.com/questions/215938/generate-synthetic-data-to-match-sample-data
df = pd.read_pickle('df_saved.pkl')
df = df.iloc[:,:-1] # this gives me df, the final Dataframe which I would like to generate a larger dataset based on. This is the smaller Dataframe with 21000x102 dimensions.
def SMOTE(T, N, k):
# """
# Returns (N/100) * n_minority_samples synthetic minority samples.
#
# Parameters
# ----------
# T : array-like, shape = [n_minority_samples, n_features]
# Holds the minority samples
# N : percetange of new synthetic samples:
# n_synthetic_samples = N/100 * n_minority_samples. Can be < 100.
# k : int. Number of nearest neighbours.
#
# Returns
# -------
# S : array, shape = [(N/100) * n_minority_samples, n_features]
# """
n_minority_samples, n_features = T.shape
if N < 100:
#create synthetic samples only for a subset of T.
#TODO: select random minortiy samples
N = 100
pass
if (N % 100) != 0:
raise ValueError("N must be < 100 or multiple of 100")
N = N/100
n_synthetic_samples = N * n_minority_samples
n_synthetic_samples = int(n_synthetic_samples)
n_features = int(n_features)
S = np.zeros(shape=(n_synthetic_samples, n_features))
#Learn nearest neighbours
neigh = NearestNeighbors(n_neighbors = k)
neigh.fit(T)
#Calculate synthetic samples
for i in range(n_minority_samples):
nn = neigh.kneighbors(T[i], return_distance=False)
for n in range(N):
nn_index = choice(nn[0])
#NOTE: nn includes T[i], we don't want to select it
while nn_index == i:
nn_index = choice(nn[0])
dif = T[nn_index] - T[i]
gap = np.random.random()
S[n + i * N, :] = T[i,:] + gap * dif[:]
return S
df = df.to_numpy()
new_data = SMOTE(df,50,10) # this is where I call the function and expect new_data to be generated with larger number of samples than original df.
Отслеживание полученной мной ошибки упоминается ниже: -
Traceback (most recent call last):
File "MyScript.py", line 66, in <module>
new_data = SMOTE(df,50,10)
File "MyScript.py", line 52, in SMOTE
nn = neigh.kneighbors(T[i], return_distance=False)
File "/trinity/clustervision/CentOS/7/apps/anaconda/4.3.31/3.6-VE/lib/python3.5/site-packages/sklearn/neighbors/base.py", line 393, in kneighbors
X = check_array(X, accept_sparse='csr')
File "/trinity/clustervision/CentOS/7/apps/anaconda/4.3.31/3.6-VE/lib/python3.5/site-packages/sklearn/utils/validation.py", line 547, in check_array
"if it contains a single sample.".format(array))
ValueError: Expected 2D array, got 1D array instead:
Я знаю, что эта ошибка (ожидаемый двумерный массив, полученный одномерный массив) возникает в строке nn = neigh.kneighbors(T[i], return_distance=False)
.Точно, когда я вызываю функцию, T является массивом numpy
формы (21000x102), мои данные, которые я преобразую из Pandas Dataframe в массив numpy
.Я знаю, что в этом вопросе могут быть похожие дубликаты, но ни один из них не отвечает на мой вопрос.Любая помощь в этом отношении будет высоко оценена.