Возможно, существует существующая функция, но вот моя версия. p_cor_mat
запускает cor.test
для каждой пары столбцов в матрице x
и записывает значение p. Затем они помещаются в квадратную матрицу и возвращаются.
# Set seed
set.seed(42)
# Matrix of data
x <- matrix(runif(120), ncol = 4)
# Function for creating p value matrix
p_cor_mat <- function(x){
# All combinations of columns
colcom <- t(combn(1:ncol(x), 2))
# Calculate p values
p_vals <- apply(colcom, MAR = 1, function(i)cor.test(x[,i[1]], x[,i[2]])$p.value)
# Create matrix for result
p_mat <- diag(ncol(x))
# Fill upper & lower triangles
p_mat[colcom] <- p_mat[colcom[,2:1]] <- p_vals
# Return result
p_mat
}
# Test function
p_cor_mat(x)
#> [,1] [,2] [,3] [,4]
#> [1,] 1.0000000 0.4495713 0.9071164 0.8462530
#> [2,] 0.4495713 1.0000000 0.5960786 0.7093539
#> [3,] 0.9071164 0.5960786 1.0000000 0.7466226
#> [4,] 0.8462530 0.7093539 0.7466226 1.0000000
Создано в 2019-03-06 пакетом Представить (v0.2.1)