Я хочу обучить простой классификатор настроений в наборе данных IMDB с использованием предварительно обученных векторов GLoVe, LSTM и конечного плотного слоя с сигмовидной активацией.
Проблема, которую я имею, состоит в том, что полученная точность относительно низкая: 78%Это ниже точности 82% при использовании обучаемого слоя внедрения вместо векторов GLoVe.
Я думаю, что основная причина этого заключается в том, что только 67,9% слов в наборе данных находятся в файле GLoVe (IЯ использую корпус 6B).
Я посмотрел некоторые слова, которые не были найдены в файле GLoVe, и некоторые примеры:
близнец бабушки
В основном много словкоторые имеют кавычки, не найдены в файле GLoVe.
Интересно, нужно ли предварительно обрабатывать данные иначе.В настоящее время предварительная обработка выполняется с помощью функции imdb.load_data()
.
Я пытался использовать более крупный корпус из 42В слов, но это привело только к 76,5% охвату.
Интересно, должны ли данныебыть по-разному, чтобы получить хорошее покрытие.
Код такой:
load_embeddings.py
from numpy import asarray
import time
def load_embeddings(filename):
start_time = time.time()
embeddings_index = dict()
f = open(filename, encoding = 'utf8')
for line in f:
values = line.split()
word = values[0]
embedding_vector = asarray(values[1:], dtype='float32')
embeddings_index[word] = embedding_vector
f.close()
end_time = time.time()
print('Loaded %s word vectors in %f seconds' % (len(embeddings_index), end_time- start_time))
return embeddings_index
поезд.py
from __future__ import print_function
import numpy as np
from keras.preprocessing import sequence
from keras.models import Sequential
from keras.layers import Dense, Embedding
from keras.layers import LSTM
from keras.datasets import imdb
from load_embeddings import load_embeddings
maxlen = 80
batch_size = 32
print('Loading data...')
(x_train, y_train), (x_test, y_test) = imdb.load_data()
print(len(x_train), 'train sequences')
print(len(x_test), 'test sequences')
print('Pad sequences (samples x time)')
x_train = sequence.pad_sequences(x_train, maxlen=maxlen)
x_test = sequence.pad_sequences(x_test, maxlen=maxlen)
print('x_train shape:', x_train.shape)
print('x_test shape:', x_test.shape)
word_to_index = imdb.get_word_index()
vocab_size = len(word_to_index)
print('Vocab size : ', vocab_size)
words_freq_list = []
for (k,v) in imdb.get_word_index().items():
words_freq_list.append((k,v))
sorted_list = sorted(words_freq_list, key=lambda x: x[1])
print("50 most common words: \n")
print(sorted_list[0:50])
# dimensionality of word embeddings
EMBEDDING_DIM = 100
# Glove file
GLOVE_FILENAME = 'data/glove.6B.100d.txt'
# Word from this index are valid words. i.e 3 -> 'the' which is the
# most frequent word
INDEX_FROM = 3
word_to_index = {k:(v+INDEX_FROM-1) for k,v in imdb.get_word_index().items()}
word_to_index["<PAD>"] = 0
word_to_index["<START>"] = 1
word_to_index["<UNK>"] = 2
embeddings_index = load_embeddings(GLOVE_FILENAME)
# create a weight matrix for words in training docs
embedding_matrix = np.zeros((vocab_size+INDEX_FROM, EMBEDDING_DIM))
# unknown words are mapped to zero vector
embedding_matrix[0] = np.array(EMBEDDING_DIM*[0])
embedding_matrix[1] = np.array(EMBEDDING_DIM*[0])
embedding_matrix[2] = np.array(EMBEDDING_DIM*[0])
for word, i in word_to_index.items():
embedding_vector = embeddings_index.get(word)
if embedding_vector is not None:
embedding_matrix[i] = embedding_vector
# uncomment below to see which words were not found
# else :
# print(word, ' not found in GLoVe file.')
nonzero_elements = np.count_nonzero(np.count_nonzero(embedding_matrix, axis=1))
coverage = nonzero_elements / vocab_size
print('Coverage = ',coverage)
# Build and train model
print('Build model...')
model = Sequential()
model.add(Embedding(vocab_size+INDEX_FROM, EMBEDDING_DIM, weights=[embedding_matrix], trainable=False, name= 'embedding'))
model.add(LSTM(EMBEDDING_DIM, dropout=0.2, recurrent_dropout=0.2, name = 'lstm'))
model.add(Dense(1, activation='sigmoid', name='out'))
# try using different optimizers and different optimizer configs
model.compile(loss='binary_crossentropy',
optimizer='adam',
metrics=['accuracy'])
print('Train...')
model.fit(x_train, y_train,
batch_size=batch_size,
epochs=10,
validation_data=(x_test, y_test))
score, acc = model.evaluate(x_test, y_test,
batch_size=batch_size)
print('Test score:', score)
print('Test accuracy:', acc)