Контроль количества ядер / потоков в dask - PullRequest
2 голосов
/ 18 марта 2019

У меня есть рабочая станция со следующими характеристиками:

Architecture:        x86_64
CPU op-mode(s):      32-bit, 64-bit
Byte Order:          Little Endian
Address sizes:       46 bits physical, 48 bits virtual
CPU(s):              16
On-line CPU(s) list: 0-15
Thread(s) per core:  2
Core(s) per socket:  8
Socket(s):           1
NUMA node(s):        1
Vendor ID:           GenuineIntel
CPU family:          6
Model:               79
Model name:          Intel(R) Xeon(R) CPU E5-1660 v4 @ 3.20GHz
Stepping:            1
CPU MHz:             1200.049
CPU max MHz:         3800.0000
CPU min MHz:         1200.0000
BogoMIPS:            6400.08
Virtualization:      VT-x
L1d cache:           32K
L1i cache:           32K
L2 cache:            256K
L3 cache:            20480K
NUMA node0 CPU(s):   0-15
Flags:               fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cdp_l3 invpcid_single pti intel_ppin ssbd ibrs ibpb stibp tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm cqm rdt_a rdseed adx smap intel_pt xsaveopt cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local dtherm ida arat pln pts flush_l1d

Я реализовал dask для распределения некоторых вычислений и задаю Client() следующим образом:

if __name__ == '__main__':
    cluster = LocalCluster()
    client = Client(cluster, asyncronous=True, n_workers=8,
                    threads_per_worker=2)
    train()

Определенно кажется, что dask использует все ресурсы, когда я вызываю свои delayed функции с dask.compute(*computations, scheduler='distributed'). Приборная панель выглядит так:

Dashboard to show all resources are used

Теперь, если я пойду дальше и поменяю Client() на:

if __name__ == '__main__':
    cluster = LocalCluster()
    client = Client(cluster, asyncronous=True, n_workers=4,
                    threads_per_worker=2)
    train()

Я бы ожидал использовать половину своих ресурсов, но, как вы можете видеть на моей панели, это не так.

Half resources not being used

Почему dask Client() все еще использует все ресурсы? Буду признателен за любой вклад по этому вопросу.

1 Ответ

3 голосов
/ 18 марта 2019

Класс Client создаст для вас кластер в том случае, если вы еще не указали его. Ключевые слова Thos действуют только тогда, когда не передает существующий экземпляр кластера. Вместо этого вы должны поместить их в свой звонок на LocalCluster:

cluster = LocalCluster(n_workers=4, threads_per_worker=2)
client = Client(cluster, asynchronous=True)

или вы можете просто пропустить создание кластера

client = Client(cluster, asynchronous=True, n_workers=4,
                threads_per_worker=2)
...