Я очень новичок в TensorFlow. Давайте предположим, что у меня уже есть обученная сверточная нейронная сеть, теперь я даю одну новую информацию для этого CNN, и я хочу посмотреть, какова вероятность предсказания в каждом классе. (например, CNN для рукописного ввода 0-2, теперь я даю новые данные 2 для этого обученного CNN, вероятность предсказания должна дать мне что-то вроде 0,01 для класса 0, 0,02 для класса 1 и 0,97 для класса 2)
Могу ли я попросить кого-нибудь посоветовать мне, какой код подходит для этого в TensorFlow (1.13.1) для python? Извините за вопрос начального уровня.
Я использую онлайн пример кода MNITS,
import numpy as np
import tensorflow as tf
def cnn_model_fn(features, labels, mode):
input_layer = tf.reshape(features["x"], [-1, 28, 28, 1])
conv1 = tf.layers.conv2d(inputs=input_layer, filters=30, kernel_size=[5, 5], padding="same", activation=tf.nn.relu)
pool1 = tf.layers.max_pooling2d(inputs=conv1, pool_size=[2, 2], strides=2)
pool2_flat = tf.reshape(pool1, [-1, 14 * 14 * 30])
dense = tf.layers.dense(inputs=pool2_flat, units=1000, activation=tf.nn.relu)
dropout = tf.layers.dropout(inputs=dense, rate=0.4, training=mode == tf.estimator.ModeKeys.TRAIN)
logits = tf.layers.dense(inputs=dropout, units=10)
predictions = {
# Generate predictions (for PREDICT and EVAL mode)
"classes": tf.argmax(input=logits, axis=1),
# Add `softmax_tensor` to the graph. It is used for PREDICT and by the
# `logging_hook`.
"probabilities": tf.nn.softmax(logits, name="softmax_tensor")
}
if mode == tf.estimator.ModeKeys.PREDICT:
return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions)
# Calculate Loss (for both TRAIN and EVAL modes)
loss = tf.losses.sparse_softmax_cross_entropy(labels=labels, logits=logits)
# Configure the Training Op (for TRAIN mode)
if mode == tf.estimator.ModeKeys.TRAIN:
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.001)
train_op = optimizer.minimize(
loss=loss,
global_step=tf.train.get_global_step())
return tf.estimator.EstimatorSpec(mode=mode, loss=loss, train_op=train_op)
# Add evaluation metrics (for EVAL mode)
eval_metric_ops = {
"accuracy after all": tf.metrics.accuracy(
labels=labels, predictions=predictions["classes"])}
return tf.estimator.EstimatorSpec(
mode=mode, loss=loss, eval_metric_ops=eval_metric_ops)
def main(unused_argv):
model_path = "/tmp/mnist_convnet_model"
# Load training and eval data
mnist = tf.contrib.learn.datasets.load_dataset("mnist")
train_data = mnist.train.images # Returns np.array
train_labels = np.asarray(mnist.train.labels, dtype=np.int32)
eval_data = mnist.test.images # Returns np.array
eval_labels = np.asarray(mnist.test.labels, dtype=np.int32)
# Create the Estimator
mnist_classifier = tf.estimator.Estimator(
model_fn=cnn_model_fn, model_dir=model_path)
# Set up logging for predictions
# Log the values in the "Softmax" tensor with label "probabilities"
logging_hook = tf.train.LoggingTensorHook(
tensors={"probabilities": "softmax_tensor"}, every_n_iter=50)
# Train the model
train_input_fn = tf.compat.v1.estimator.inputs.numpy_input_fn(
x={"x": train_data},
y=train_labels,
batch_size=100,
num_epochs=None,
shuffle=True)
mnist_classifier.train(
input_fn=train_input_fn,
steps=5000,
hooks=[logging_hook])
# Evaluate the model and print results
eval_input_fn = tf.compat.v1.estimator.inputs.numpy_input_fn(
x={"x": eval_data}, y=eval_labels, num_epochs=1, shuffle=False)
eval_results = mnist_classifier.evaluate(input_fn=eval_input_fn)
print(eval_results)
if __name__ == "__main__":
tf.app.run()