метод подбора в керасе (форма массива) - PullRequest
0 голосов
/ 30 марта 2019

При компиляции моего кода в методе подгонки преобразования он показывает ошибку о форме массива: «ValueError: Ошибка при проверке ввода: ожидалось, что dens_1_input имеет shape (6,), но получил массив с shape (11,)»

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd



dataset = pd.read_csv('Churn_Modelling.csv')
x = dataset.iloc[:, 3:13].values
y = dataset.iloc[:, 13].values


from sklearn.preprocessing import LabelEncoder, OneHotEncoder
labelencoder_x_1 = LabelEncoder()
x[:, 1] = labelencoder_x_1.fit_transform(x[:, 1])
labelencoder_x_2 = LabelEncoder()
x[:, 2] = labelencoder_x_2.fit_transform(x[:, 2])
onehotencoder = OneHotEncoder(categorical_features =[1])
x = onehotencoder.fit_transform(x).toarray()
x =x[:, 1:]

from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x,y, test_size =0.2, random_state =0)


from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
x_train = sc.fit_transform(x_train)
x_test = sc.transform(x_test)

import keras
from keras.models import Sequential
from keras.layers import Dense

classifier = Sequential()


classifier.add(Dense(output_dim =6, init = 'uniform', activation= 'relu', input_dim= 6))

classifier.add(Dense(output_dim =6, init = 'uniform', activation= 'relu' ))

classifier.add(Dense(output_dim =1, init = 'uniform', activation = 'sigmoid' ))

classifier.compile(optimizer ='adam', loss = 'binary_crossentropy', metrics =['accuracy'])

classifier.fit(x_train, y_train, batch_size = 10, nb_epoch = 100)

y_pred = classifier.predict(x_test)
y_pred = (y_pred > 0.5)


from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)

1 Ответ

0 голосов
/ 30 марта 2019

Дискретность в x_train и, возможно, x_test. Если вы посмотрите на print(x_train.shape), вы, вероятно, получите что-то вроде (N, 11), где N - количество выборок, каждая из которых содержит 11 признаков. Но подождите, ваша модель имеет 6 input_dim функций. Так что вы можете:

  • либо измените input_dim=11 в первом слое
  • или посмотрите на предварительную обработку, чтобы убедиться, что вы вернетесь к 6 функциям.
Добро пожаловать на сайт PullRequest, где вы можете задавать вопросы и получать ответы от других членов сообщества.
...