Я пытаюсь обучить Faster-RCNN с использованием базы базы Densenet.Обучение работает, как и ожидалось, когда я тренируюсь с нуля, однако я хочу использовать контрольную точку обучения Densenet, уже подготовленную.Проблема состоит в том, что предварительно обученная контрольная точка содержит только слои «веса», но для обучения API требуются также слои «смещения», которых нет в контрольной точке, поэтому процесс обучения завершается неудачно, поскольку он не может правильно загрузить контрольную точку.Есть ли способ, как я могу изменить контрольную точку, чтобы она имела дополнительную «смещенную» часть слоев.Репозиторий github, где я получил контрольную точку https://github.com/taki0112/Densenet-Tensorflow
Редактировать: вот запрошенный файл конфигурации конвейера:
model {
faster_rcnn {
num_classes: 90
image_resizer {
keep_aspect_ratio_resizer {
min_dimension: 600
max_dimension: 1024
}
}
feature_extractor {
type: 'faster_rcnn_densenet121'
first_stage_features_stride: 8
}
first_stage_anchor_generator {
grid_anchor_generator {
scales: [0.25, 0.5, 1.0, 2.0]
aspect_ratios: [0.5, 1.0, 2.0]
height_stride: 8
width_stride: 8
}
}
first_stage_atrous_rate: 2
first_stage_box_predictor_conv_hyperparams {
op: CONV
regularizer {
l2_regularizer {
weight: 0.0
}
}
initializer {
truncated_normal_initializer {
stddev: 0.01
}
}
}
first_stage_nms_score_threshold: 0.0
first_stage_nms_iou_threshold: 0.7
first_stage_max_proposals: 300
first_stage_localization_loss_weight: 2.0
first_stage_objectness_loss_weight: 1.0
initial_crop_size: 17
maxpool_kernel_size: 1
maxpool_stride: 1
second_stage_box_predictor {
mask_rcnn_box_predictor {
use_dropout: false
dropout_keep_probability: 1.0
fc_hyperparams {
op: FC
regularizer {
l2_regularizer {
weight: 0.0
}
}
initializer {
variance_scaling_initializer {
factor: 1.0
uniform: true
mode: FAN_AVG
}
}
}
}
}
second_stage_post_processing {
batch_non_max_suppression {
score_threshold: 0.0
iou_threshold: 0.6
max_detections_per_class: 100
max_total_detections: 100
}
score_converter: SOFTMAX
}
second_stage_localization_loss_weight: 2.0
second_stage_classification_loss_weight: 1.0
}
}
train_config: {
batch_size: 1
optimizer {
momentum_optimizer: {
learning_rate: {
manual_step_learning_rate {
initial_learning_rate: 0.001
schedule {
step: 9000000
learning_rate: .0001
}
schedule {
step: 12000000
learning_rate: .00001
}
}
}
momentum_optimizer_value: 0.9
}
use_moving_average: false
}
gradient_clipping_by_norm: 10.0
# Note: The below line limits the training process to 200K steps, which we
# empirically found to be sufficient enough to train the pets dataset. This
# effectively bypasses the learning rate schedule (the learning rate will
# never decay). Remove the below line to train indefinitely.
fine_tune_checkpoint: "/home/peter/models/research/object_detection/faster_rcnn_densenet121/tf-densenet121.ckpt"
fine_tune_checkpoint_type: "classification"
data_augmentation_options {
random_horizontal_flip {
}
}
}
train_input_reader: {
tf_record_input_reader {
input_path: "/home/peter/models/research/object_detection/data/coco_train.record-*"
}
label_map_path: "/home/peter/models/research/object_detection/data/mscoco_label_map.pbtxt"
}
eval_config: {
num_examples: 8000
max_evals: 10
# Note: The below line limits the evaluation process to 10 evaluations.
# Remove the below line to evaluate indefinitely.
use_moving_averages: false
metrics_set: "coco_detection_metrics"
eval_interval_secs: 3600
}
eval_input_reader: {
tf_record_input_reader {
input_path: "/home/peter/models/research/object_detection/data/coco_val.record-00000-of-00010"
}
label_map_path: "/home/peter/models/research/object_detection/data/mscoco_label_map.pbtxt"
shuffle: false
num_readers: 1
queue_capacity: 20 # change this number
min_after_dequeue: 1 # change this number (strictly less than the above)
}