Я хотел бы добавить значения из всех словарей, которые я создал в своем скрипте Python, в файл CSV во время выполнения моего кода, чтобы в конце у меня было что-то вроде этого:
Файл вначало:
id;Verbatim;score
15;je suis monter à la boulangerie;4
44;tu es méchant;5
45;je te hais et la foret enchanté est belle de milles faux et les jeunes filles sont assises au bor de la mer;7
47;je ne comprends pas la vie et je suis perdue, aide moi stp maman je suis perdue tu es ma seule amie et je t'aime;8
CSV-файл в конце: (для простого способа; я хотел бы добавить эти столбцы в существующий файл)
id;Verbatim;score;**d_tag;d_lemma;d_filtered_words**
15;Je suis monter à , la boulangerie;4;['Je\tPRO:PER\tje', 'suis\tVER:pres\tsuivre|être', 'monter\tVER:infi\tmonter', 'à\tPRP\tà', ',\tPUN\t,', 'la\tDET:ART\tle', 'boulangerie\tNOM\tboulangerie'];['je', 'suivre|être', 'monter', 'à', ',', 'le', 'boulangerie'];['monter', 'boulangerie']
44;Tu es ? méchant;5;['Tu\tPRO:PER\ttu', 'es\tVER:pres\têtre', '?\tSENT\t?', 'méchant\tNOM\tméchant'];['tu', 'être', '?', 'méchant'];['être', 'méchant']
45;Je te hais et la Foret enchantée est belle de milles faux et les jeunes filles sont assises au bor de la mer;7;['Je\tPRO:PER\tje', 'te\tPRO:PER\tte', 'hais\tVER:pres\thaïr', 'et\tKON\tet', 'la\tDET:ART\tle', 'Foret\tNAM\tForet', 'enchantée\tVER:pper\tenchanter', 'est\tVER:pres\têtre', 'belle\tADJ\tbeau', 'de\tPRP\tde', 'milles\tNOM\tmille', 'faux\tADJ\tfaux', 'et\tKON\tet', 'les\tDET:ART\tle', 'jeunes\tADJ\tjeune', 'filles\tNOM\tfille', 'sont\tVER:pres\têtre', 'assises\tVER:pper\tasseoir', 'au\tPRP:det\tau', 'bor\tNOM\tbor', 'de\tPRP\tde', 'la\tDET:ART\tle', 'mer\tNOM\tmer'];['je', 'te', 'haïr', 'et', 'le', 'Foret', 'enchanter', 'être', 'beau', 'de', 'mille', 'faux', 'et', 'le', 'jeune', 'fille', 'être', 'asseoir', 'au', 'bor', 'de', 'le', 'mer'];['haïr', 'Foret', 'enchanter', 'être', 'beau', 'mille', 'faux', 'jeune', 'fille', 'être', 'asseoir', 'bor', 'mer']
47;Je ne Comprends pas la vie et je ? suis perdue aide moi stp maman je suis perdue tu es ma seule amie et je t'aime;8;['Je\tPRO:PER\tje', 'ne\tADV\tne', 'Comprends\tVER:pres\tcomprendre', 'pas\tADV\tpas', 'la\tDET:ART\tle', 'vie\tNOM\tvie', 'et\tKON\tet', 'je\tPRO:PER\tje', '?\tSENT\t?', 'suis\tVER:pres\tsuivre|être', 'perdue\tVER:pper\tperdre', 'aide\tNOM\taide', 'moi\tPRO:PER\tmoi', 'stp\tVER:simp\tstp', 'maman\tNOM\tmaman', 'je\tPRO:PER\tje', 'suis\tVER:pres\tsuivre|être', 'perdue\tVER:pper\tperdre', 'tu\tPRO:PER\ttu', 'es\tVER:pres\têtre', 'ma\tDET:POS\tmon', 'seule\tADJ\tseul', 'amie\tNOM\tami', 'et\tKON\tet', 'je\tPRO:PER\tje', ""t'\tPRO:PER\tte"", 'aime\tVER:pres\taimer'];['je', 'ne', 'comprendre', 'pas', 'le', 'vie', 'et', 'je', '?', 'suivre|être', 'perdre', 'aide', 'moi', 'stp', 'maman', 'je', 'suivre|être', 'perdre', 'tu', 'être', 'mon', 'seul', 'ami', 'et', 'je', 'te', 'aimer'];['comprendre', 'vie', 'perdre', 'aide', 'stp', 'maman', 'perdre', 'être', 'seul', 'ami', 'aimer']
Полный код:
# -*- coding: UTF-8 -*-
import codecs
import re
import os
import sys, argparse
import subprocess
import pprint
import csv
from itertools import islice
import pickle
import nltk
from nltk import tokenize
from nltk.tokenize import sent_tokenize, word_tokenize
from nltk.corpus import stopwords
try:
import treetaggerwrapper
from treetaggerwrapper import TreeTagger, make_tags
print("import TreeTagger OK")
except:
print("Import TreeTagger pas Ok")
from itertools import islice
from collections import defaultdict
#export le lexique de sentiments
pickle_in = open("dict_pickle", "rb")
dico_lexique = pickle.load(pickle_in)
# extraction colonne verbatim
d = {}
with open(sys.argv[1], 'r', encoding='utf-8') as csv_file:
csv_file.readline()
for line in csv_file:
token = line.split(';')
try:
d[token[0]] = token[1]
except:
print(line)
print(d)
tagger = treetaggerwrapper.TreeTagger(TAGLANG='fr')
d_tag = {}
for key, val in d.items():
newvalues = tagger.tag_text(val)
d_tag[key] = newvalues
#print(d_tag)
#lemma dictionary
d_lemma = defaultdict(list)
for k, v in d_tag.items():
for p in v:
parts = p.split('\t')
try:
d_lemma[k].append(parts[2])
except:
print(parts)
print(d_lemma)
#filtered words
stopWords = set(stopwords.words('french'))
d_filtered_words = defaultdict(list)
d_filtered_words = {k: [w for w in l if w not in stopWords and w.isalpha()] for k, l in d_lemma.items()}
print(d_filtered_words)
#writing tags in the dictionary
with open("sortie.csv", "w") as output:
writer = csv.DictWriter(output, "w")
for k, v in d_tag.items():
writer.writerow(k)
writer.writerow(v)