Использование PolyCollection
(как показано в @ cripcate's answer ) является преимуществом в этом случае.Более сжатая версия, использующая один массив numpy, может выглядеть так:
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.collections import PolyCollection
def triangle_collection(d, ax=None, width=0.4, **kwargs):
ax = ax or plt.gca()
verts = np.c_[d[:,0]-width/2, d[:,1], d[:,0]+width/2,
d[:,1], d[:,0], d[:,2]].reshape(len(d),3,2)
c = PolyCollection(verts, **kwargs)
ax.add_collection(c)
ax.autoscale()
return c
data = np.array([(1,22,20), (2,21,19.5), (3,18,20),
(4,17,19), (5,15,17), (6,11,8.5), (7,14,12)])
fig, ax = plt.subplots()
fig.subplots_adjust(left=0.3, right=0.7)
triangle_collection(data, facecolors=plt.cm.tab10(np.arange(len(data))))
plt.show()
