Хорошо, это будет очень долго.Я пытаюсь рассчитать уровень воды в аналитическом решении в полярной сетке.Это зависит как от r и тета, так и от этой переменной j.То, что я пытаюсь сделать, - это, по сути, рассчитать уровень воды в определенной точке тета в моей сетке на основе заданного уравнения.У этого уравнения есть часть, где оно суммирует бесконечные значения j.Часть уравнения здесь Изображение уравнения
Часть кода выглядит следующим образом:
"""
Plot idealized solution for water levels in a quarter circle domain with
constant bathymetry
"""
import numpy as np
import matplotlib.pyplot as plt
#from pylab import meshgrid,cm,imshow,contour,clabel,colorbar,axis,title,show
# establish parameters
Ho = 300 #m
g = 9.81 #m/s2
r1 = 1000 #m
r2 = 10000 #m
rr = np.arange(r1,r2,10)
#radial size of domain
phi = np.pi/2
#theta is the angle in radians at a specific location within the domain
#theta = np.pi/4
theta = np.arange(0, phi, np.pi/360)#varies
Theta = theta[1:180]
zeta = [0] * len(rr) * len(Theta)
#converting from wind speed to wind shear stress
U = 10
Cd = (1/1000) * ((3/4) + (U/15))
Roair = 1.225 #kg/m3
Rowater = 997 #kg/m3
W = (Roair/Rowater) * Cd * (U**2)
#wind shear in m^2/s^2 in the 0 direction (W to E)
Wo = np.sqrt((W**2)/2)
#wind shear in m^2/s^2 in the phi direction
Wphi = np.sqrt((W**2)/2)
zeta = np.zeros((len(rr), len(Theta)))
#determines the bathymetry
a_star = []
n = 0
kappa = (1-n)**(0.5)
for t in range(len(Theta)):
a_star.append ( ( (np.sin(phi)) / (g*Ho*kappa* np.sin(kappa*Theta[t])) ) )
#first half of equation 19 that does not depend on j
for r in range(len(rr)):
for t in range(len(Theta)):
zeta[r,t] = ( (a_star[t] * (rr[r]**(1-n)))*(Wo*np.cos(((1-n)**(0.5))*Theta[t]) + Wphi*np.cos(((1-n)**(0.5))*(Theta[t]-phi))) )
#second half of equation 19 for j=0
ajbj = []
for t in range(len(Theta)):
j = 0
Djo = np.sin(( ( (1-n)**(0.5) ) * phi ) ) / ( (1-n)**(0.5) * (phi) )
Ejo = (np.sin(phi)) / (phi)
ajbj.append ( (r2**(1-n)) * (-a_star[t] * Djo))
for r in range(len(rr)):
zeta[r,t] = zeta[r,t] + (ajbj[t])*(Wo+Wphi)
#second half of equation 19 for j=1,2,3 (summation)
sj = []
tj = []
Dj = []
Ej = []
r1EogH = []
astarD = []
tjr1r2 = []
sjr2 = []
aj = []
bj = []
jj = [1,2,3]
for j in range(len(jj)):
sj.append(- (n/2) + np.sqrt( ( (n/2)**2) + ( (jj[j]*np.pi / phi)**2) ) )
tj.append (- (n/2) - np.sqrt( ( (n/2)**2) + ( (jj[j]*np.pi / phi)**2) ) )
Dj.append ( (2* ((-1)**jj[j]) * ((1-n)**(0.5)) * phi * np.sin( ((1-n)**(0.5)) * phi )) / ( (1-n) * (phi**2) - (jj[j]**2) * (np.pi**2) ) )
Ej.append ( (2* ((-1)**jj[j]) * phi * np.sin(phi) ) / ( (phi**2) - (jj[j]**2) * (np.pi**2) ) )
r1EogH.append ( ( (r1**(1-n)) * Ej[j] ) / ( g * Ho ) )
tjr1r2.append ( tj[j] * (r1**tj[j]) * (r2**sj[j]) )
sjr2.append ( sj[j] * (r2**tj[j]) )
for t in range(len(Theta)):
#astarD.append ( a_star[t] * Dj[j] )
aj.append ( ( a_star[t]*Dj[j] * ( ( tj[j] * (r1**tj[j]) * (r2**(1-n)) ) - ( (r2**tj[j]) * (r1**(1-n)) ) ) + ( r1EogH[j] * r2**tj[j] ) ) / ( (sjr2[j] * (r1**sj[j])) - tjr1r2[j] ) )
bj.append ( ( -1* a_star[t]*Dj[j] * ( ( sj[j] * (r1**sj[j]) * (r2**(1-n)) ) - ( (r2**sj[j]) * (r1**(1-n)) ) ) - ( r1EogH[j] * r2**sj[j] ) ) / ( (sjr2[j] * (r2**sj[j])) - tjr1r2[j] ) )
for r in range(len(rr)):
zeta[r,t] = zeta[r,t] + ( ( (aj[j] * rr[r]**(sj[j])) + (bj[j] * rr[r]**(tj[j])) ) * (Wo*np.cos( (jj[j]*np.pi*Theta[t])/phi) + Wphi*np.cos( (jj[j]*np.pi*(Theta[t]-phi))/phi)) )
x,y = np.meshgrid(Theta, rr)
X = Theta
Y = rr
fig = plt.figure()
ax = fig.add_subplot(111, polar='True')
ax.pcolormesh(X, Y, zeta) #X,Y & data2D must all be same dimensions
ax.set_thetamin(0)
ax.set_thetamax(90)
plot = ax.pcolor(zeta)
fig.colorbar(plot)
plt.show()
Решение для выше Значения Iполучать за дзета очень много.Они должны больше походить на значения в приведенном ниже решении для тета PI / 4.Я знаю, что уравнения сложны.Я хочу, чтобы точка в сетке сказала r = 1000, тета = pi / 4, чтобы она вычислила дзета-значение для j = 1, j = 2 и j = 3, а затем сложила их все вместе и затем сделала то же самое.вещь в каждой точке сетки.Мне интересно, нужно ли мне просто структурировать свои циклы по-другому?Или не использовать функцию .append?У кого-нибудь есть какие-либо предложения?
СДЕЛАНО ДЛЯ ТЭТА ПИ / 4
"""
Plot idealized solution for water levels in a quarter circle domain with
constant bathymetry
"""
import numpy as np
import matplotlib.pyplot as plt
#from pylab import meshgrid,cm,imshow,contour,clabel,colorbar,axis,title,show
# establish parameters
Ho = 300 #m
g = 9.81 #m/s2
r1 = 1000 #m
r2 = 10000 #m
rr = np.arange(r1,r2,10)
zeta = [0] * len(rr)
#radial size of domain
phi = np.pi/2
#theta is the angle in radians at a specific location within the domain
theta = np.pi/4
#converting from wind speed to wind shear stress
U = 10
Cd = (1/1000) * ((3/4) + (U/15))
Roair = 1.225 #kg/m3
Rowater = 997 #kg/m3
W = (Roair/Rowater) * Cd * (U**2)
#wind shear in m^2/s^2 in the 0 direction (W to E)
Wo = np.sqrt((W**2)/2)
#wind shear in m^2/s^2 in the phi direction
Wphi = np.sqrt((W**2)/2)
#determines the bathymetry
n = 0
kappa = (1-n)**(0.5)
a_star = ( (np.sin(phi)) / (g*Ho*kappa* np.sin(kappa*theta)) )
#first half of equation 19 that does not depend on j
for r in range(len(rr)):
zeta[r] = ( a_star * (rr[r]**(1-n))*(Wo*np.cos(((1-n)**(0.5))*theta) + Wphi*np.cos(((1-n)**(0.5))*(theta-phi))) )
#plt.xlabel("rr")
#plt.ylabel("zeta")
###
#plt.plot(rr,zeta, label = 'LHS eq 19')
#second half of equation 19 for j=0
for r in range(len(rr)):
j = 0
Djo = np.sin(( ( (1-n)**(0.5) ) * phi ) ) / ( (1-n)**(0.5) * (phi) )
Ejo = (np.sin(phi)) / (phi)
ajbj = (r2**(1-n)) * (-a_star * Djo)
zeta[r] = zeta[r] + (ajbj)*(Wo+Wphi)
#plt.xlabel("rr")
#plt.ylabel("zeta")
###
#plt.plot(rr,zeta, label = 'j=0')
#second half of equation 19 for j=1,2,3 (summation)
sj = []
tj = []
Dj = []
Ej = []
r1EogH = []
astarD = []
tjr1r2 = []
sjr2 = []
aj = []
bj = []
jj = [1,2,3]
for j in range(len(jj)):
sj.append(- (n/2) + np.sqrt( ( (n/2)**2) + ( (jj[j]*np.pi / phi)**2) ) )
tj.append (- (n/2) - np.sqrt( ( (n/2)**2) + ( (jj[j]*np.pi / phi)**2) ) )
Dj.append ( (2* ((-1)**jj[j]) * ((1-n)**(0.5)) * phi * np.sin( ((1-n)**(0.5)) * phi )) / ( (1-n) * (phi**2) - (jj[j]**2) * (np.pi**2) ) )
Ej.append ( (2* ((-1)**jj[j]) * phi * np.sin(phi) ) / ( (phi**2) - (jj[j]**2) * (np.pi**2) ) )
r1EogH.append ( ( (r1**(1-n)) * Ej[j] ) / ( g * Ho ) )
astarD.append ( a_star * Dj[j] )
tjr1r2.append ( tj[j] * (r1**tj[j]) * (r2**sj[j]) )
sjr2.append ( sj[j] * (r2**tj[j]) )
aj.append ( ( astarD[j] * ( ( tj[j] * (r1**tj[j]) * (r2**(1-n)) ) - ( (r2**tj[j]) * (r1**(1-n)) ) ) + ( r1EogH[j] * r2**tj[j] ) ) / ( sjr2[j] * (r1**sj[j]) - tjr1r2[j] ) )
bj.append (- ( astarD[j] * ( ( sj[j] * (r1**sj[j]) * (r2**(1-n)) ) - ( (r2**sj[j]) * (r1**(1-n)) ) ) - ( r1EogH[j] * r2**sj[j] ) ) / ( sjr2[j] * (r2**sj[j]) - tjr1r2[j] ) )
for r in range(len(rr)):
zeta[r] = zeta[r] + ( ( (aj[j] * rr[r]**(sj[j])) + (bj[j] * rr[r]**(tj[j])) ) * (Wo*np.cos( (jj[j]*np.pi*theta)/phi) + Wphi*np.cos( (jj[j]*np.pi*(theta-phi))/phi)) )
plt.xlabel("rr")
plt.ylabel("zeta")
plt.title("Wind In at 45 degrees")
#
plt.plot(rr,zeta, label = 'Ho=100m')
plt.legend(loc='upper right')
Решение для тета 45 градусов