В настоящее время я участвую в проекте глубокого обучения, который мне нужно оценить с использованием метрик чувствительности и специфичности, которые не включены в готовые керасы.
Я реализовал функцию чувствительностиследующим образом:
from keras import backend as K
def sensitivity(y, y_pred):
TP = 0
FP = 0
TN = 0
FN = 0
for i in range(5):
true = (y == i)
preds = (y_pred == i)
print(preds)
TP += K.sum(preds[true == 1])
FP += K.sum(true[np.invert(preds) == 1])
TN += K.sum(np.invert(preds)[true == 1])
FN += K.sum(true[preds == 0])
return TP / (TP + FN)
Это прекрасно работает само по себе.Тем не менее, когда я пытаюсь использовать его при компиляции модели, я получаю сообщение об ошибке «объект« bool »не может быть подписан».
Как обойти это?
Код для компиляции и полное сообщение об ошибке включены ниже.Спасибо!РЕДАКТИРОВАТЬ: Следуя ответу ниже и некоторым исследованиям, я смог исправить код, который я вставил внизу поста.При компиляции моделей в Keras он оценивается либо Theano, либо TensorFlow, и поэтому вы не можете использовать команды Numpy для создания собственных метрик.
from keras.datasets import mnist
from keras.applications.vgg16 import VGG16
(x_train, y_train), (x_test, y_test) = mnist.load_data()
model = VGG16(
include_top=False,
weights='imagenet',
input_tensor=None,
input_shape=None,
pooling=None,
classes=10)
model.compile(optimizer='rmsprop',
loss='categorical_crossentropy',
metrics=['accuracy', sensitivity])
TypeError Traceback (most recent call last)
<ipython-input-20-46c5d210c7ea> in <module>()
9 model.compile(optimizer='rmsprop',
10 loss='categorical_crossentropy',
---> 11 metrics=['accuracy', sensitivity])
/home/USER/Documents/deep_learning/custom_metrics/venv/lib/python3.6/site-packages/keras/engine/training.py in compile(self, optimizer, loss, metrics, loss_weights, sample_weight_mode, weighted_metrics, target_tensors, **kwargs)
449 output_metrics = nested_metrics[i]
450 output_weighted_metrics = nested_weighted_metrics[i]
--> 451 handle_metrics(output_metrics)
452 handle_metrics(output_weighted_metrics, weights=weights)
453
/home/USER/Documents/deep_learning/custom_metrics/venv/lib/python3.6/site-packages/keras/engine/training.py in handle_metrics(metrics, weights)
418 metric_result = weighted_metric_fn(y_true, y_pred,
419 weights=weights,
--> 420 mask=masks[i])
421
422 # Append to self.metrics_names, self.metric_tensors,
/home/USER/Documents/deep_learning/custom_metrics/venv/lib/python3.6/site-packages/keras/engine/training_utils.py in weighted(y_true, y_pred, weights, mask)
402 """
403 # score_array has ndim >= 2
--> 404 score_array = fn(y_true, y_pred)
405 if mask is not None:
406 # Cast the mask to floatX to avoid float64 upcasting in Theano
<ipython-input-18-caa661fb93ac> in sensitivity(y, y_pred)
11 preds = (y_pred == i)
12 print(preds)
---> 13 TP += K.sum(preds[true == 1])
14 FP += K.sum(true[np.invert(preds) == 1])
15 TN += K.sum(np.invert(preds)[true == 1])
TypeError: 'bool' object is not subscriptable
def sensitivity(y, y_pred):
TP = 0
FP = 0
TN = 0
FN = 0
for i in range(5):
true = K.equal(y, i)
preds = K.equal(y_pred, i)
TP += K.sum(K.cast(tf.boolean_mask(preds, tf.math.equal(true, True)), 'int32'))
FP += K.sum(K.cast(tf.boolean_mask(true, tf.math.equal(~preds, True)), 'int32'))
TN += K.sum(K.cast(tf.boolean_mask(~preds, tf.math.equal(true, True)), 'int32'))
FN += K.sum(K.cast(tf.boolean_mask(true, tf.math.equal(preds, False)), 'int32'))
return TP / (TP + FN)