Я новичок в tenorflow и keras. Я пытаюсь обучить модель распознавать различные изображения для бумаги и ножниц. Я использую онлайн-учебник для этого, и они предоставили мне рабочий лист Google Colb. Когда я тренирую модель на Google Collab, все работает нормально, но если я пытаюсь тренировать модель на моей машине, это выдает мне эту ошибку:
ValueValueError: Empty training data
Я попытался изменить размер пакета, а также попытался изменить количество изображений в наборе данных, но это не помогает (и не должно).
Вот мой код:
###### ROCK PAPER SISSORS #######
import os
import numpy as np
import cv2
import tensorflow as tf
import keras_preprocessing
from keras_preprocessing import image
from keras_preprocessing.image import ImageDataGenerator
import matplotlib.pyplot as plt
# import matplotlib.image as mpimg
# Provide the path to the directory of the classes
rock_dir = os.path.join('/media/visheshchanana/New Volume/Projects/datasets/RPS/rps/rock')
paper_dir = '/media/visheshchanana/New Volume/Projects/datasets/RPS/rps/paper'
scissors_dir = '/media/visheshchanana/New Volume/Projects/datasets/RPS/rps/scissors'
rock_files = os.listdir(rock_dir)
# print(rock_files[:10])
#
paper_files = os.listdir(paper_dir)
# print(paper_files[:10])
#
scissors_files = os.listdir(scissors_dir)
# # print(scissors_files[:10])
# Use the augmentation tool to change the augmentation of the images so that we can have a better classifier
TRAINING_DIR = "/media/visheshchanana/New Volume/Projects/datasets/RPS/rps"
training_datagen = ImageDataGenerator(
rescale = 1./255,
rotation_range=40,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True,
fill_mode='nearest')
# Provide the path to the validation dataset
VALIDATION_DIR = "/media/visheshchanana/New Volume/Projects/datasets/RPS/RPS_validation"
validation_datagen = ImageDataGenerator(rescale = 1./255)
train_generator = training_datagen.flow_from_directory(
TRAINING_DIR,
target_size=(150,150),
class_mode='categorical'
)
validation_generator = validation_datagen.flow_from_directory(
VALIDATION_DIR,
target_size=(150,150),
class_mode='categorical'
)
model = tf.keras.models.Sequential([
# Note the input shape is the desired size of the image 150x150 with 3 bytes color
# This is the first convolution
tf.keras.layers.Conv2D(64, (3,3), activation='relu', input_shape=(150, 150, 3)),
tf.keras.layers.MaxPooling2D(2, 2),
# The second convolution
tf.keras.layers.Conv2D(64, (3,3), activation='relu'),
tf.keras.layers.MaxPooling2D(2,2),
# The third convolution
tf.keras.layers.Conv2D(128, (3,3), activation='relu'),
tf.keras.layers.MaxPooling2D(2,2),
# The fourth convolution
tf.keras.layers.Conv2D(128, (3,3), activation='relu'),
tf.keras.layers.MaxPooling2D(2,2),
# Flatten the results to feed into a DNN
tf.keras.layers.Flatten(),
tf.keras.layers.Dropout(0.5),
# 512 neuron hidden layer
tf.keras.layers.Dense(512, activation='relu'),
tf.keras.layers.Dense(3, activation='softmax')
])
model.summary()
model.compile(loss = 'categorical_crossentropy', optimizer='rmsprop', metrics=['accuracy'])
history = model.fit_generator(train_generator, epochs=5, validation_data = validation_generator, verbose = 1)
Набор данных такой же, как и в Google Collab. Я не могу понять причину этой ошибки.