Я использую алгоритм машинного обучения kNN, и вместо того, чтобы разделять набор данных на 66,6% для обучения и 33,4% для тестов, мне нужно использовать перекрестную проверку со следующими параметрами: K = 3,1 / евклидов .
K = 3 не имеет загадки, я просто добавляю к коду:
Classifier = KNeighborsClassifier(n_neighbors=3, p=2, metric='euclidean')
и все решаемо.Что я не могу понять, это 1 / евклидов , и как я могу применить это к коду?
import pandas as pd
import time
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import cross_val_score
from sklearn import metrics
def openfile():
df = pd.read_csv('Testfile - kNN.csv')
return df
def main():
start_time = time.time()
dataset = openfile()
X = dataset.drop(columns=['Label'])
y = dataset['Label'].values
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
Classifier = KNeighborsClassifier(n_neighbors=3, p=2, metric='euclidean')
Classifier.fit(X_train, y_train)
y_pred_class = Classifier.predict(X_test)
score = cross_val_score(Classifier, X, y, cv=10)
y_pred_prob = Classifier.predict_proba(X_test)[:, 1]
print("accuracy_score:", metrics.accuracy_score(y_test, y_pred_class),'\n')
print("confusion matrix")
print(metrics.confusion_matrix(y_test, y_pred_class),'\n')
print("Background precision score:", metrics.precision_score(y_test, y_pred_class, labels=['background'], average='micro')*100,"%")
print("Botnet precision score:", metrics.precision_score(y_test, y_pred_class, labels=['bot'], average='micro')*100,"%")
print("Normal precision score:", metrics.precision_score(y_test, y_pred_class, labels=['normal'], average='micro')*100,"%",'\n')
print(metrics.classification_report(y_test, y_pred_class, digits=2),'\n')
print(score,'\n')
print(score.mean(),'\n')
print("--- %s seconds ---" % (time.time() - start_time))