library(dplyr)
library(tidyr)
library(lubridate)
df %>%
# FY is the year of the date, plus 1 if the month is July or later.
# FY_label makes the requested format, by combining the prior year,
# a slash, and digits 3&4 of the FY.
mutate(FY = year(Date) + if_else(month(Date) >= 7, 1, 0),
FY_label = paste0(FY-1, "/", substr(FY, 3, 4))) %>%
mutate(sector = recode_factor(isic,
'A'='Agriculture','B'='Industry','C'='Industry','D'='Industry',
'E'='Industry','F'='Industry', 'K'='Mystery Sector')) %>%
filter(!is.na(FY)) %>% # Exclude rows with missing FY
group_by(FY_label, sector) %>%
summarise(Cash = sum(Cash)) %>%
spread(FY_label, Cash)
# A tibble: 1 x 4
sector `2013/14` `2014/15` `2017/18`
<fct> <int> <int> <int>
1 Mystery Sector 1355286 377954 373165