У меня есть некоторые данные транзакции, которые выглядят так.
import pandas as pd
from io import StringIO
from datetime import datetime
from datetime import timedelta
data = """\
cust_id,datetime,txn_type,txn_amt
100,2019-03-05 6:30,Credit,25000
100,2019-03-06 7:42,Debit,4000
100,2019-03-07 8:54,Debit,1000
101,2019-03-05 5:32,Credit,25000
101,2019-03-06 7:13,Debit,5000
101,2019-03-06 8:54,Debit,2000
"""
df = pd.read_table(StringIO(data), sep=',')
df['datetime'] = pd.to_datetime(df['datetime'], format='%Y-%m-%d %H:%M:%S')
# use datetime as the dataframe index
df = df.set_index('datetime')
print(df)
cust_id txn_type txn_amt
datetime
2019-03-05 06:30:00 100 Credit 25000
2019-03-06 07:42:00 100 Debit 4000
2019-03-07 08:54:00 100 Debit 1000
2019-03-05 05:32:00 101 Credit 25000
2019-03-06 07:13:00 101 Debit 5000
2019-03-06 08:54:00 101 Debit 2000
Я хотел бы пересчитать данные на дневном уровне, агрегируя (суммируя) txn_amount
для каждой комбинации cust_id
и txn_type
.В то же время я хочу стандартизировать индекс до 5 дней (в настоящее время данные содержат только 3 дня данных).По сути, это то, что я хотел бы создать:
cust_id txn_type txn_amt
datetime
2019-03-03 100 Credit 0
2019-03-03 100 Debit 0
2019-03-03 101 Credit 0
2019-03-03 101 Debit 0
2019-03-04 100 Credit 0
2019-03-04 100 Debit 0
2019-03-04 101 Credit 0
2019-03-04 101 Debit 0
2019-03-05 100 Credit 25000
2019-03-05 100 Debit 0
2019-03-05 101 Credit 25000
2019-03-05 101 Debit 0
2019-03-06 100 Credit 0
2019-03-06 100 Debit 4000
2019-03-06 101 Credit 0
2019-03-06 101 Debit 7000 => (note: aggregated value)
2019-03-07 100 Credit 0
2019-03-07 100 Debit 1000
2019-03-07 101 Credit 0
2019-03-07 101 Debit 0
До сих пор я пытался создать новый индекс даты и времени и попытаться пересэмплировать, а затем использовать вновь созданный индекс следующим образом:
# create a 5 day datetime index
end_dt = max(df.index).to_pydatetime().strftime('%Y-%m-%d')
start_dt = max(df.index) - timedelta(days=4)
start_dt = start_dt.to_pydatetime().strftime('%Y-%m-%d')
dt_index = pd.date_range(start=start_dt, end=end_dt, freq='1D', name='datetime')
Тем не менее, я не уверен, что делать с группировкой.Повторная выборка без группировки выводит неверные результаты:
# resample timeseries so that one row is 1 day's worth of txns
df2 = df.resample(rule='D').sum().reindex(dt_index).fillna(0)
print(df2)
cust_id txn_amt
datetime
2019-03-03 0.0 0.0
2019-03-04 0.0 0.0
2019-03-05 201.0 50000.0
2019-03-06 302.0 11000.0
2019-03-07 100.0 1000.0
Итак, как я могу включить группировку cust_id
и tsn_type
при повторной выборке?Я видел этот похожий вопрос , но структура данных ОП отличается.