У вас есть массив данных формы (3,) и 4 поля:
In [85]: x = np.array(
...: [('A', 'B', np.nan, np.nan),
...: ('B', np.nan, np.nan, np.nan),
...: ('A', 'B', 'H', 'Z')],
...: dtype=[('D1', 'O'), ('D2', 'O'),
...: ('D3', 'O'), ('D4', 'O')])
In [86]: x
Out[86]:
array([('A', 'B', nan, nan), ('B', nan, nan, nan), ('A', 'B', 'H', 'Z')],
dtype=[('D1', 'O'), ('D2', 'O'), ('D3', 'O'), ('D4', 'O')])
In [87]: x.shape
Out[87]: (3,)
In [88]: x['D1']
Out[88]: array(['A', 'B', 'A'], dtype=object)
In [89]: x['D3']
Out[89]: array([nan, nan, 'H'], dtype=object)
Вы не можете сделать это рваным.
Но вы можете сделать из него 2d массиви затем выполнить понимание списка:
In [93]: xx = np.array(x.tolist())
In [94]: xx
Out[94]:
array([['A', 'B', 'nan', 'nan'],
['B', 'nan', 'nan', 'nan'],
['A', 'B', 'H', 'Z']], dtype='<U3')
In [95]: [[i for i in row if i!='nan'] for row in xx]
Out[95]: [['A', 'B'], ['B'], ['A', 'B', 'H', 'Z']]
Мы также можем выполнить понимание элементов структурированного массива:
In [101]: [[i for i in row if i is not np.nan] for row in x]
Out[101]: [['A', 'B'], ['B'], ['A', 'B', 'H', 'Z']]
Элемент x
подобен кортежу.Технически это np.void
(составная запись dtype), но он повторяется как кортеж.