У меня есть некоторый код от Rapach, Strauss and Zhou (2013), Журнал финансов.
Он вычисляет загрузочные p-значения для односторонних проверок гипотез,
H0: B=0 against H1: B>0
Isдля меня возможно адаптировать этот код для вычисления проверки гипотезы:
H0: B=0 against H1: B\=0
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Computing statistics for wild bootstrapped pseudo samples
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
stats_boot=zeros(N+1,N,B);
for b=1:B;
for j=1:N;
[results_j_star,R_squared_j_star]=...
Estimate_Granger_pairwise_GMM(Y_star(:,:,b),...
Y_star(:,:,b),X_1_star(:,:,b),X_2_star(:,:,b),j);
for i=1:(N-1);
if j==1;
stats_boot(i+1,j,b)=results_j_star(i,2);
else
if i<j;
stats_boot(i,j,b)=results_j_star(i,2);
else
stats_boot(i+1,j,b)=results_j_star(i,2);
end;
end;
end;
stats_boot(N+1,j,b)=results_j_star(end,2);
disp([b j]);
end;
end;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Computing wild bootstrapped p-values
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for j=1:N;
for i=1:N+1;
stats_boot_i_j=stats_boot(i,j,:);
stats_p_i_j=stats_boot_i_j>results_all(2,j,i);
results_all(3,j,i)=sum(stats_p_i_j)/B;
end;
end;