Я пытаюсь объединить OpenCV для простоты использования с изображениями и OpenCL.Задача состоит в том, чтобы загрузить изображение и преобразовать его в оттенки серого со значениями пикселей с плавающей запятой.Затем я хочу сделать свертку изображения с помощью filte.
Когда я пытаюсь запустить ядро, я получаю сообщение об ошибке: "clEnqueueReadImage: Код ошибки -30" -> CL_INVALID_VALUES
Кажется, чтоЯ получаю недопустимые значения при чтении результатов "Может ли кто-нибудь помочь мне найти ошибку?
#define _CRT_SECURE_NO_WARNINGS
#define __CL_ENABLE_EXCEPTIONS
#define PROGRAM_FILE "convolution.cl"
#define KERNEL_FUNC "laplacianFilter"
#include <iostream>
#include <fstream>
#include <CL/cl.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp>
int main()
{
//////////////////////////////////////////////////////////////////////////
//PREPROCESSING
//////////////////////////////////////////////////////////////////////////
cv::Mat Input, Input_f;
cv::Mat Output, Output_f;
//Load the Image and convert it to grayscale as float
Input = cv::imread("hqdefault.jpg", 0); //loads image as grayscale; 1 channel
//Input.convertTo(Input_f, CV_32FC1, 1/255.0); //scale or convert the image back later
Input.convertTo(Input_f, CV_32FC1);
//Create output images
Input.copyTo(Output);
Input_f.copyTo(Output_f);
//uint8 image values - 0 ... 255
//float image values - 0 ... 1 -> scaling necessary
//cv::imshow("Input_f", Input_f);
int imageWidth, imageHeight;
imageWidth = Input_f.cols;
imageHeight = Input_f.rows;
//Create filter kernel - Laplace
float filter[9] =
{0, 1, 0,
1, -4, 1,
0, 1, 0 };
//The filter is 3x3
int filterWidth = 3;
int filterSize = filterWidth * filterWidth;
//Setup OpenCL Structure
std::vector<cl::Platform> platforms;
std::vector<cl::Device> devices;
try
{
//Platform
cl::Platform::get(&platforms);
//Device
platforms[0].getDevices(CL_DEVICE_TYPE_GPU, &devices);
//Context
cl::Context mycontext(devices);
//Command Queue
cl::CommandQueue queue(mycontext, NULL, NULL);
//Image Format
cl::ImageFormat format(CL_R, CL_FLOAT); //specifies how the image is read
//single channel CL_FLOAT = 32 bit
/*cl::ImageFormat format;
format.image_channel_order = CL_R;
format.image_channel_data_type = CL_FLOAT;*/
//Create images on device
cl::Image2D d_Input(mycontext,
CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
format,
imageWidth,
imageHeight,
0 /*sizeof(float) * imageWidth*/,
(float*)Input_f.data,
NULL);
cl::Image2D d_Output(mycontext,
CL_MEM_WRITE_ONLY,
format,
imageWidth,
imageHeight,
0 /*sizeof(float) * imageWidth*/,
NULL,
NULL);
//Create filter on device
cl::Buffer d_filter(mycontext,
CL_READ_ONLY_CACHE | CL_MEM_COPY_HOST_PTR,
sizeof(float) * filterSize,
(void*)&filter,
NULL);
//Create image sampler
cl::Sampler sampler(mycontext,
CL_FALSE,
CL_ADDRESS_CLAMP_TO_EDGE,
CL_FILTER_NEAREST,
NULL);
//Origin and Region
cl::size_t<3> origin;
origin[0] = 0;
origin[1] = 0;
origin[2] = 0;
cl::size_t<3> region;
origin[0] = imageWidth;
origin[1] = imageHeight;
origin[2] = 1;
//Create Program
std::ifstream programFile(PROGRAM_FILE);
std::string programString(std::istreambuf_iterator<char>(programFile), (std::istreambuf_iterator<char>()));
//std::cout << "Program String:\n" << programString << std::endl;
cl::Program::Sources source(1, std::make_pair(programString.c_str(), programString.length() + 1));
cl::Program program(mycontext, source, NULL);
try
{
program.build(devices);
}
catch (cl::Error& esc)
{
if (esc.err() == CL_BUILD_PROGRAM_FAILURE)
{
// Check the build status
cl_build_status status = program.getBuildInfo<CL_PROGRAM_BUILD_STATUS>(devices[0]);
// Get the build log
std::string buildlog = program.getBuildInfo<CL_PROGRAM_BUILD_LOG>(devices[0]);
std::cerr << "Build log for " << buildlog << std::endl;
}
}
//Create Kernel
cl::Kernel kernel(program, KERNEL_FUNC, NULL);
//Set Kernel Arguments
kernel.setArg(0, d_Input);
kernel.setArg(1, d_Output);
kernel.setArg(2, imageWidth);
kernel.setArg(3, imageHeight);
kernel.setArg(4, d_filter);
kernel.setArg(5, filterWidth);
kernel.setArg(6, sampler);
//Execute the Kernel
cl::NDRange offset(0, 0);
cl::NDRange global_size(imageHeight, imageWidth); //1.height - 2.width
cl::NDRange local_size(1, 1);
queue.enqueueNDRangeKernel(kernel,
offset,
global_size,
local_size);
//Read back the output Image
queue.enqueueReadImage(d_Output, CL_TRUE, origin, region, 0, 0, (float*)Output_f.data, NULL, NULL);
}
catch (cl::Error e)
{
std::cout << e.what() << ": Error code " << e.err() << std::endl;
}
//cv::waitKey();
std::system("pause");
}
KERNEL CODE:
__kernel void laplacianFilter(__read_only image2d_t iimage,
__write_only image2d_t oimage,
int cols,
int rows,
__constant float *filter,
int windowSize,
sampler_t sampler)
{
int col = get_global_id(0); //columns
int row = get_global_id(1); //rows
int halfWidth = windowSize/2;
float4 pixelValue = {0.0, 0.0, 0.0, 0.0};
float4 sum = 0.0f;
int2 coords;
int filterIdx = 0;
//Convolute over the filter
//Go over rows
for (int i = -halfWidth; i <= halfWidth; i++)
{
coords.y = row + i;
//Go over columns
for (int j = -halfWidth; j <= halfWidth; j++)
{
coords.x = col + i;
//Read pixel value and multiply by filter
pixelValue = read_imagef(iimage, sampler, coords);
sum = sum + pixelValue * filter[filterIdx++];
}
}
//Write resulting value to correspoding pixel
if (col < cols && row < rows)
{
write_imagef(oimage, (int2)(col, row), sum);
}
}