Как изобразить частоту слов в минуту из кадра данных Python - PullRequest
0 голосов
/ 12 апреля 2019

У меня есть датафрейм, созданный из голосовой транскрипции нескольких аудиофайлов (по одному на каждого человека):

#      Name   Start_Time           Duration   Transcript
# Person A    12:12:2018 12:12:00  3.5        Transcript from Person A
# Person B    12:12:2018 12:14:00  5.5        Transcript from Person B
# .........................
# .........................
# Person N    12:12:2018 13:00:00  9.0        Transcript from Person N

Есть ли способ:

  1. Узнайте «n» наиболее часто употребляемых слов за «x» минут полного разговора.
  2. Есть ли способ нанести 'n' наиболее часто встречающихся слов за 'x' минут полной продолжительности разговора.

Для части 2. a за 'x' минутный график с высотой столбца, масштабированной до суммы вхождений 'n' наиболее распространенных слов? Есть ли более интуитивно понятный способ графического отображения этой информации?

EDIT: Я прилагаю простой минимальный ноутбук Ipython из того, что у меня сейчас

Блокнот Ipython

Проблемы:

  1. Повторная выборка кадра данных за 60 с не дает результата, так как некоторые разговоры могут длиться более 60 секунд. Например, в первой и четвертой строках приведенного ниже кадра данных есть разговоры продолжительностью 114 секунд. Не уверен, что они будут разделены на точные 60 с, даже если они могут разделиться, может каскадно перейти к следующему 1-минутному интервалу времени и сделать его длительностью более 60 с, как в случае первой и второй строки в кадре данных ниже .
Start Time                  Name        Start Time                      End Time            Duration    Transcript                  
2019-04-13 18:51:22.567532  Person A    2019-04-13 18:51:22.567532  2019-04-13 18:53:16.567532  114     A dude meows on this cool guy my gardener met yesterday for no apparent reason.
2019-04-13 18:53:24.567532  Person D    2019-04-13 18:53:24.567532  2019-04-13 18:54:05.567532  41      Your homie flees from the king for a disease.
2019-04-13 18:57:14.567532  Person B    2019-04-13 18:57:14.567532  2019-04-13 18:57:55.567532  41      The king hacks some guy because the sky is green.
2019-04-13 18:59:32.567532  Person D    2019-04-13 18:59:32.567532  2019-04-13 19:01:26.567532  114     A cat with rabies spies on a cat with rabies for a disease.
  1. Поскольку каждый минутный интервал имеет различный набор слов с наибольшей частотой 'n', гистограмма не представляется возможной. Я остановился на точечном графике 2 , который выглядит сбивающим с толку из-за высоты разных слов по оси Y. Есть ли лучший график для визуализации этих данных?

Также перечислите полный код здесь:

import pandas as pd
import random
import urllib
import plotly
import plotly.graph_objs as go
from datetime import datetime,timedelta
from collections import Counter
from IPython.core.display import display, HTML
from plotly.offline import init_notebook_mode, iplot
init_notebook_mode()

def printdfhtml(df):
        old_width = pd.get_option('display.max_colwidth')
        pd.set_option('display.max_colwidth', -1)
        display(HTML(df.to_html(index=True)))
        pd.set_option('display.max_colwidth', old_width)

def removeStopwords(wordlist, stopwords):
        return [w for w in wordlist if w not in stopwords]

def stripNonAlphaNum(text):
    import re
    return re.compile(r'\W+', re.UNICODE).split(text)

def sortFreqDict(freqdict):
    aux = [(freqdict[key], key) for key in freqdict]
    aux.sort()
    aux.reverse()
    return aux

def sortDictKeepTopN(freqdict,keepN):
    return dict(Counter(freqdict).most_common(keepN))

def wordListToFreqDict(wordlist):
    wordfreq = [wordlist.count(p) for p in wordlist]
    return dict(zip(wordlist,wordfreq))

s_nouns = ["A dude", "My bat", "The king", "Some guy", "A cat with rabies", "A sloth", "Your homie", "This cool guy my gardener met yesterday", "Superman"]
p_nouns = ["These dudes", "Both of my cars", "All the kings of the world", "Some guys", "All of a cattery's cats", "The multitude of sloths living under your bed", "Your homies", "Like, these, like, all these people", "Supermen"]
s_verbs = ["eats", "kicks", "gives", "treats", "meets with", "creates", "hacks", "configures", "spies on", "retards", "meows on", "flees from", "tries to automate", "explodes"]
p_verbs = ["eat", "kick", "give", "treat", "meet with", "create", "hack", "configure", "spy on", "retard", "meow on", "flee from", "try to automate", "explode"]
infinitives = ["to make a pie.", "for no apparent reason.", "because the sky is green.", "for a disease.", "to be able to make toast explode.", "to know more about archeology."]

people = ["Person A","Person B","Person C","Person D"]
start_time = datetime.now() - timedelta(minutes = 10)
complete_transcript = pd.DataFrame(columns=['Name','Start Time','End Time','Duration','Transcript'])
for i in range(1,10):
    start_time = start_time + timedelta(seconds = random.randint(10,240)) # random delay bw ppl talking 10sec to 4 mins
    curr_transcript = " ".join([random.choice(s_nouns), random.choice(s_verbs), random.choice(s_nouns).lower() or random.choice(p_nouns).lower(), random.choice(infinitives)])
    talk_duration = random.randint(5,120) # 5 sec to 2 min talk
    end_time = start_time + timedelta(seconds = talk_duration)
    complete_transcript.loc[i] = [random.choice(people),
                                 start_time,
                                 end_time,
                                 talk_duration,
                                 curr_transcript] 


df = complete_transcript.copy()
df = df.sort_values(['Start Time'])
df.index=df['Start Time']
printdfhtml(df)

re_df = df.copy()
re_df = re_df.drop("Name", axis=1)
re_df = re_df.drop("End Time", axis=1)
re_df = re_df.drop("Start Time", axis=1)
re_df = re_df.resample('60S').sum()
printdfhtml(re_df)

stopwords = ['a', 'about', 'above', 'across', 'after', 'afterwards']
stopwords += ['again', 'against', 'all', 'almost', 'alone', 'along']
stopwords += ['already', 'also', 'although', 'always', 'am', 'among']
stopwords += ['amongst', 'amoungst', 'amount', 'an', 'and', 'another']
stopwords += ['any', 'anyhow', 'anyone', 'anything', 'anyway', 'anywhere']
stopwords += ['are', 'around', 'as', 'at', 'back', 'be', 'became']
stopwords += ['because', 'become', 'becomes', 'becoming', 'been']
stopwords += ['before', 'beforehand', 'behind', 'being', 'below']
stopwords += ['beside', 'besides', 'between', 'beyond', 'bill', 'both']
stopwords += ['bottom', 'but', 'by', 'call', 'can', 'cannot', 'cant']
stopwords += ['co', 'computer', 'con', 'could', 'couldnt', 'cry', 'de']
stopwords += ['describe', 'detail', 'did', 'do', 'done', 'down', 'due']
stopwords += ['during', 'each', 'eg', 'eight', 'either', 'eleven', 'else']
stopwords += ['elsewhere', 'empty', 'enough', 'etc', 'even', 'ever']
stopwords += ['every', 'everyone', 'everything', 'everywhere', 'except']
stopwords += ['few', 'fifteen', 'fifty', 'fill', 'find', 'fire', 'first']
stopwords += ['five', 'for', 'former', 'formerly', 'forty', 'found']
stopwords += ['four', 'from', 'front', 'full', 'further', 'get', 'give']
stopwords += ['go', 'had', 'has', 'hasnt', 'have', 'he', 'hence', 'her']
stopwords += ['here', 'hereafter', 'hereby', 'herein', 'hereupon', 'hers']
stopwords += ['herself', 'him', 'himself', 'his', 'how', 'however']
stopwords += ['hundred', 'i', 'ie', 'if', 'in', 'inc', 'indeed']
stopwords += ['interest', 'into', 'is', 'it', 'its', 'itself', 'keep']
stopwords += ['last', 'latter', 'latterly', 'least', 'less', 'ltd', 'made']
stopwords += ['many', 'may', 'me', 'meanwhile', 'might', 'mill', 'mine']
stopwords += ['more', 'moreover', 'most', 'mostly', 'move', 'much']
stopwords += ['must', 'my', 'myself', 'name', 'namely', 'neither', 'never']
stopwords += ['nevertheless', 'next', 'nine', 'no', 'nobody', 'none']
stopwords += ['noone', 'nor', 'not', 'nothing', 'now', 'nowhere', 'of']
stopwords += ['off', 'often', 'on','once', 'one', 'only', 'onto', 'or']
stopwords += ['other', 'others', 'otherwise', 'our', 'ours', 'ourselves']
stopwords += ['out', 'over', 'own', 'part', 'per', 'perhaps', 'please']
stopwords += ['put', 'rather', 're', 's', 'same', 'see', 'seem', 'seemed']
stopwords += ['seeming', 'seems', 'serious', 'several', 'she', 'should']
stopwords += ['show', 'side', 'since', 'sincere', 'six', 'sixty', 'so']
stopwords += ['some', 'somehow', 'someone', 'something', 'sometime']
stopwords += ['sometimes', 'somewhere', 'still', 'such', 'system', 'take']
stopwords += ['ten', 'than', 'that', 'the', 'their', 'them', 'themselves']
stopwords += ['then', 'thence', 'there', 'thereafter', 'thereby']
stopwords += ['therefore', 'therein', 'thereupon', 'these', 'they']
stopwords += ['thick', 'thin', 'third', 'this', 'those', 'though', 'three']
stopwords += ['three', 'through', 'throughout', 'thru', 'thus', 'to']
stopwords += ['together', 'too', 'top', 'toward', 'towards', 'twelve']
stopwords += ['twenty', 'two', 'un', 'under', 'until', 'up', 'upon']
stopwords += ['us', 'very', 'via', 'was', 'we', 'well', 'were', 'what']
stopwords += ['whatever', 'when', 'whence', 'whenever', 'where']
stopwords += ['whereafter', 'whereas', 'whereby', 'wherein', 'whereupon']
stopwords += ['wherever', 'whether', 'which', 'while', 'whither', 'who']
stopwords += ['whoever', 'whole', 'whom', 'whose', 'why', 'will', 'with']
stopwords += ['within', 'without', 'would', 'yet', 'you', 'your']
stopwords += ['yours', 'yourself', 'yourselves','']

x_trace = np.linspace(1,len(re_df.index),len(re_df.index))
n_top_words = 3
y_trace1 = []
y_trace2 = []
y_trace3 = []
for index, row in re_df.iterrows():
    str_to_check=str(row['Transcript']).lower()
    if(str_to_check!='0') and (str_to_check!=''):
        print('-----------------------------')
        wordlist = stripNonAlphaNum(str_to_check)
        wordlist = removeStopwords(wordlist, stopwords)
        dictionary = wordListToFreqDict(wordlist)
        print('text: ',str_to_check)
        print('words dropped dict: ',dictionary)
        sorteddict = sortDictKeepTopN(dictionary,n_top_words)
        cnt=0
        for s in sorteddict: 
            print(str(s))
            if cnt==0:
                y_trace1.append(s)
            elif cnt==1:
                y_trace2.append(s)
            elif cnt==2:
                y_trace3.append(s)
            cnt+=1

trace1 = {"x": x_trace, 
          "y": y_trace1, 
          "marker": {"color": "pink", "size": 12}, 
          "mode": "markers", 
          "name": "1st", 
          "type": "scatter"
}

trace2 = {"x": x_trace, 
          "y": y_trace2, 
          "marker": {"color": "blue", "size": 12}, 
          "mode": "markers", 
          "name": "2nd", 
          "type": "scatter", 
}

trace3 = {"x": x_trace, 
          "y": y_trace3, 
          "marker": {"color": "grey", "size": 12}, 
          "mode": "markers", 
          "name": "3rd", 
          "type": "scatter", 
}

data = [trace3, trace2, trace1]
layout = {"title": "Most Frequent Words per Minute", 
          "xaxis": {"title": "Time (in Minutes)", }, 
          "yaxis": {"title": "Words"}}

fig = go.Figure(data=data, layout=layout)
plotly.offline.iplot(fig)
...