Когда я слышу матрицу разреженности - первое, что приходит мне в голову - это множество нулей :)
Один из подходов - преобразовать разреженную матрицу в массив numpy -> сделать какую-нибудь необычную нарезку -> вернуться назадк разреженной матрице:
# create sparse matrix
training_set_index = [5553,24104] # for example I need this index
row = np.array([0, 0, 0, 0, 0])
col = np.array([4136, 5553, 9089, 24104, 28061])
data = np.array([1, 1, 1, 3, 2])
dim_0 = (1,28062)
S = csr_matrix((data, (row, col)), shape=dim_0)
print(S)
#(0, 4136) 1
#(0, 5553) 1
#(0, 9089) 1
#(0, 24104) 3
#(0, 28061) 2
# convert to numpy array
M = S.toarray()
# create np.zeros arrays and fill them with based on training_set_index
x = np.zeros((28061, ),dtype=int)
y = np.zeros((28061, ),dtype=int)
np.add.at(x, training_set_index, M[0,training_set_index])
np.add.at(y, training_set_index, M[0,28061])
# new sparse matrix
S_training = csr_matrix(x)
print(S_training)
#(0, 5553) 1
#(0, 24104) 3
Приятного нарезки!