Если вы хотите создать вручную, с помощью bs4 4.7.1 вы можете использовать псевдоклассы :not
, :contains
и :nth-of-type
, чтобы изолировать два интересующих столбца, затем создать dict, а затем преобразовать в df
import pandas as pd
import urllib
from bs4 import BeautifulSoup as bs
source = urllib.request.urlopen('https://www.zipcodestogo.com/Texas/').read()
soup = bs(source,'lxml')
zips = [item.text for item in soup.select('.inner_table:contains(Texas) td:nth-of-type(1):not([colspan])')]
cities = [item.text for item in soup.select('.inner_table:contains(Texas) td:nth-of-type(2):not([colspan])')]
d = {'Zips': zips,'Cities': cities}
df = pd.DataFrame(d)
df = df[1:].reset_index(drop = True)
Вы можете объединить селекторы в одну строку:
import pandas as pd
import urllib
from bs4 import BeautifulSoup as bs
source = urllib.request.urlopen('https://www.zipcodestogo.com/Texas/').read()
soup = bs(source,'lxml')
items = [item.text for item in soup.select('.inner_table:contains(Texas) td:nth-of-type(1):not([colspan]), .inner_table:contains(Texas) td:nth-of-type(2):not([colspan])')]
d = {'Zips': items[0::2],'Cities': items[1::2]}
df = pd.DataFrame(d)
df = df[1:].reset_index(drop = True)
print(df)
Замечу, что вы хотите создать вручную, но для будущих читателей стоит знать, что вы можете просто использовать pandas read_html
import pandas as pd
table = pd.read_html('https://www.zipcodestogo.com/Texas/')[1]
table.columns = table.iloc[1]
table = table[2:]
table = table.drop(['Zip Code Map', 'County'], axis=1).reset_index(drop=True)
print(table)