Я запутался в функции nn.linear.Для отличительной черты последнего nn.MaxPool2d модели VGG-19 размер тензора равен (512, 7, 7).Модель ниже использует функцию объединения и изменяет размер тензора до (512, 49), затем напрямую использует nn.linear (512, 7).Почему он не может успешно работать без проблем с несовпадением?
source
'''VGG11/13/16/19 in Pytorch.'''
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
cfg = {
'VGG11': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
'VGG13': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
'VGG16': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'],
'VGG19': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'],
}
class VGG(nn.Module):
def __init__(self, vgg_name):
super(VGG, self).__init__()
self.features = self._make_layers(cfg[vgg_name])
self.classifier = nn.Linear(512, 7)
def forward(self, x):
out = self.features(x)
out = out.view(out.size(0), -1)
out = F.dropout(out, p=0.5, training=self.training)
out = self.classifier(out)
return out
def _make_layers(self, cfg):
layers = []
in_channels = 3
for x in cfg:
if x == 'M':
layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
else:
layers += [nn.Conv2d(in_channels, x, kernel_size=3, padding=1),
nn.BatchNorm2d(x),
nn.ReLU(inplace=True)]
in_channels = x
layers += [nn.AvgPool2d(kernel_size=1, stride=1)]
return nn.Sequential(*layers)