Для меня не совсем понятно, о чем вы спрашиваете - Если желаемый результат - массив 4x2, который индексирует, какой из трех массивов имеет максимальное значение в позиции i,j
, тогда вы хотите используйте np.argmax
>>> import numpy as np
>>> predict_prob1 =([[0.95602106, 0.04397894],
[0.93332366, 0.06667634],
[0.97311459, 0.02688541],
[0.97323962, 0.02676038]])
>>> predict_prob2 =([[0.70425144, 0.29574856],
[0.69751251, 0.30248749],
[0.7072872 , 0.2927128 ],
[0.68683139, 0.31316861]])
>>> predict_prob3 =([[0.56551921, 0.43448079],
[0.93321106, 0.06678894],
[0.92345399, 0.07654601],
[0.88396842, 0.11603158]])
>>> np.argmax((predict_prob1,predict_prob2,predict_prob3), 0)
array([[0, 2],
[0, 1],
[0, 1],
[0, 1]])
>>>
Добавление
Прочитав комментарий ОП , я добавляю следующее к своему ответу
>>> names = np.array(['predict_prob%d'%(i+1) for i in range(3)])
>>> names[np.argmax((predict_prob1,predict_prob2,predict_prob3),0)]
array([['predict_prob1', 'predict_prob3'],
['predict_prob1', 'predict_prob2'],
['predict_prob1', 'predict_prob2'],
['predict_prob1', 'predict_prob2']], dtype='<U13')
>>>