Метод по ссылке Пьера Барета может решить мою проблему. Когда линия проходит только по вершинам определенного вокселя, посещать текущий воксель - очень расплывчатый вопрос, поэтому я немного изменил метод. Когда два или более значения в tMaxX, tMaxY и tMaxZ равны, воксели, сгенерированные методом в статье, являются такими, как показано в a. Я сделал небольшое изменение, чтобы получить результат в б. Более нормальное условие показано в c, который сравнивает линии, сгенерированные 3D-Брезенхэмом и этим методом соответственно.
![enter image description here](https://i.stack.imgur.com/NaYga.png)
Код, реализованный c ++:
void line3D(int endX, int endY, int endZ, int startX, int startY, int startZ, void draw){
int x1 = endX, y1 = endY, z1 = endZ, x0 = startX, y0 = startY, z0 = startZ;
int dx = abs(x1 - x0);
int dy = abs(y1 - y0);
int dz = abs(z1 - z0);
int stepX = x0 < x1 ? 1 : -1;
int stepY = y0 < y1 ? 1 : -1;
int stepZ = z0 < z1 ? 1 : -1;
double hypotenuse = sqrt(pow(dx, 2) + pow(dy, 2) + pow(dz, 2));
double tMaxX = hypotenuse*0.5 / dx;
double tMaxY = hypotenuse*0.5 / dy;
double tMaxZ = hypotenuse*0.5 / dz;
double tDeltaX = hypotenuse / dx;
double tDeltaY = hypotenuse / dy;
double tDeltaZ = hypotenuse / dz;
while (x0 != x1 || y0 != y1 || z0 != z1){
if (tMaxX < tMaxY) {
if (tMaxX < tMaxZ) {
x0 = x0 + stepX;
tMaxX = tMaxX + tDeltaX;
}
else if (tMaxX > tMaxZ){
z0 = z0 + stepZ;
tMaxZ = tMaxZ + tDeltaZ;
}
else{
x0 = x0 + stepX;
tMaxX = tMaxX + tDeltaX;
z0 = z0 + stepZ;
tMaxZ = tMaxZ + tDeltaZ;
}
}
else if (tMaxX > tMaxY){
if (tMaxY < tMaxZ) {
y0 = y0 + stepY;
tMaxY = tMaxY + tDeltaY;
}
else if (tMaxY > tMaxZ){
z0 = z0 + stepZ;
tMaxZ = tMaxZ + tDeltaZ;
}
else{
y0 = y0 + stepY;
tMaxY = tMaxY + tDeltaY;
z0 = z0 + stepZ;
tMaxZ = tMaxZ + tDeltaZ;
}
}
else{
if (tMaxY < tMaxZ) {
y0 = y0 + stepY;
tMaxY = tMaxY + tDeltaY;
x0 = x0 + stepX;
tMaxX = tMaxX + tDeltaX;
}
else if (tMaxY > tMaxZ){
z0 = z0 + stepZ;
tMaxZ = tMaxZ + tDeltaZ;
}
else{
x0 = x0 + stepX;
tMaxX = tMaxX + tDeltaX;
y0 = y0 + stepY;
tMaxY = tMaxY + tDeltaY;
z0 = z0 + stepZ;
tMaxZ = tMaxZ + tDeltaZ;
}
}
draw(x0, y0, z0);
}
}