У меня есть набор данных, который выглядит следующим образом:
city period_day date
1 barcelona morning 2017-01-15
2 sao_paulo afternoon 2016-12-07
3 sao_paulo morning 2016-11-16
4 barcelona morning 2016-11-06
5 barcelona afternoon 2016-12-31
6 sao_paulo afternoon 2016-11-30
7 barcelona morning 2016-10-15
8 barcelona afternoon 2016-11-30
9 sao_paulo afternoon 2016-12-24
10 sao_paulo afternoon 2017-02-02
Для каждой строки я хочу подсчитать, сколько строк имеют более старую дату, чем дата строки, как для города, так и для period_day.В данном случае я хочу получить такой результат:
city period_day date row_count
1 barcelona morning 2017-01-15 2
2 sao_paulo afternoon 2016-12-07 1
3 sao_paulo morning 2016-11-16 0
4 barcelona morning 2016-11-06 1
5 barcelona afternoon 2016-12-31 1
6 sao_paulo afternoon 2016-11-30 0
7 barcelona morning 2016-10-15 0
8 barcelona afternoon 2016-11-30 0
9 sao_paulo afternoon 2016-12-24 2
10 sao_paulo afternoon 2017-02-02 3
Когда row_count равен 0, это означает, что это более старая дата.
Я нашел решение, но это заняло слишком много временис большим количеством данных.Вот код:
get_count_function <- function(df) {
idx <- 1:nrow(df)
count <- sapply(idx, function(x) {
name_city <-
df %>% select(city) %>% filter(row_number() == x) %>% pull()
name_period <-
df %>% select(period_day) %>% filter(row_number() == x) %>% pull()
date_row <- df %>%
select(date) %>%
filter(row_number() == x) %>%
pull()
date_any_row <- df %>%
filter(dplyr::row_number() != x,
city == name_city,
period_day == name_period) %>%
select(date) %>%
pull()
how_many <- sum(date_row > date_any_row)
return(how_many)
})
return(count)
}
Как мне сделать эту функцию более эффективной?